
The Limits of Logic
Jeffrey Sanford Russell

University of Southern California

Last revised October 31, 2023

ii

Title page image: Hildegard of Bingen (1098–1179), Fol. 38 Liber Divinorum
Operum (The Book of Divine Works) I, 4. Public domain.

Contents

Preface 1
The Big Picture . 1
About This Text . 5
Acknowledgments . 8

Strategies for Proving Things 1
0.1 Give yourself room . 2
0.2 Keep track of your goals . 2
0.3 Proving an “every” statement . 3
0.4 Unpacking definitions . 6
0.5 Proving an “if” statement . 9
0.6 Putting it together . 11
0.7 Using existence statements . 16
0.8 Proving existence statements . 18
0.9 “And” statements . 20
0.10 “Iff” statements . 21
0.11 “Or” statements . 22
0.12 Proof by contradiction . 23
0.13 Thinking big and thinking small 24

1 Sets and Functions 27
1.1 Sets . 27
1.2 Functions . 34
1.3 Ordered Pairs . 44
1.4 Higher-Order Sets and Functions 46
1.5 The Uncollectable . 48
1.6 Simplifications of Set Theory* 55
1.7 Review . 61

iii

iv CONTENTS

2 The Infinite 63
2.1 Numbers and Induction . 64
2.2 Recursive Definitions . 72
2.3 The Recursion Theorem* . 88
2.4 Sequences and Strings . 92
2.5 Official Principles for Sequences* 101
2.6 Properties of Numbers and Strings 103
2.7 Review . 107

3 Terms 109
3.1 Signatures and Structures . 109
3.2 Syntax and Semantics . 115
3.3 Parsing Terms* . 127
3.4 Recursion for Terms* . 133
3.5 Variables . 140
3.6 Review . 149

4 The Uncountable 151
4.1 Counting . 153
4.2 Countable Sets . 156
4.3 Coding and Parsing Details* . 165
4.4 Finite Sets* . 167
4.5 Uncountable Sets . 170
4.6 Induction and Infinity* . 174
4.7 Review . 178

5 Truth and Consequence 181
5.1 Syntax . 182
5.2 Semantics . 190
5.3 Metalogic . 198
5.4 Theories and Axioms . 205
5.5 Review . 213

6 The Inexpressible 215
6.1 Explicit Definitions . 215
6.2 Unpacking Definitions* . 225
6.3 Defining Quotation . 228
6.4 Recursive Definitions . 230
6.5 Recursive Definitions, in General* 236
6.6 Representing Language . 237

CONTENTS v

6.7 Self-Reference and Paradox . 242
6.8 Definitions in a Theory . 245
6.9 Theories of Syntax . 249
6.10 Representability in the Minimal Theory of Strings 𝖲* 256
6.11 Syntax and Arithmetic . 266
6.12 Review . 270
6.13 Key Concepts . 270
6.14 Key Facts . 270

7 The Undecidable 273
7.1 Programs . 274
7.2 Syntax and Semantics . 286
7.3 The Church-Turing Thesis . 297
7.4 The Universal Program . 300
7.5 The Halting Problem . 307
7.6 Semi-Decidable and Effectively Enumerable Sets 312
7.7 Decidability and Logic . 315

8 The Unprovable 323
8.1 Proofs . 324
8.2 Official Syntax . 337
8.3 The Completeness Theorem . 353
8.4 Models of Arithmetic* . 362
8.5 The Incompleteness Theorem . 363
8.6 Gödel Sentences . 365
8.7 Rosser Sentences* . 368
8.8 Consistency is Unprovable . 369

9 Second-Order Logic* 373
9.1 Syntax and Semantics . 373
9.2 Second-order Peano Arithmetic 374
9.3 Further Directions . 375

10 Set Theory* 377

References 381

vi CONTENTS

Preface

There is nothing careless in the attitude of the
exemplary person toward what is said.

Confucius (551?–479? BCE), Analects

The Big Picture

Between roughly 1870 and 1940 a group of people studying philosophy and
mathematics—as well as fields that hadn’t yet emerged as disciplines with their
own names and course catalogues, like linguistics and computer science—made
some of the most important and beautiful discoveries in the history of human
inquiry. Through these remarkable discoveries, finite beings began to understand
the limits on finite beings in new ways: limits on what can be counted, described,
calculated, or proved. Even more remarkably, we began to precisely understand
what is beyond those limits: we now can give precise, well-understood, and
rigorously demonstrated general principles and specific examples of the infinite
and uncountable, the indescribable, the uncomputable, and the unprovable.

Here are some of the highlights. These are facts which we will be examining in
detail throughout this text.

The Uncountable. There are infinities of different sizes. (Indeed, infinitely many
different sizes!) (This is called “Cantor’s Theorem.”)

The Inexpressible. For any precise language, there are properties that it cannot
precisely express. These include the property of being a true sentence in that
language. (This is called “Tarski’s Theorem.”)

The Undecidable. There are questions that cannot be answered in general by any
systematic method. These “undecidable” questions include the question of
which general systematic methods will eventually succeed. (This is called

1

2 CONTENTS

“Turing’s Theorem”.) They also include the question of which arguments are
logically valid. (This is called “Church’s Theorem.”)

The Unprovable. For any reasonable logical system, there are facts that can be
formally described, but cannot be formally proved. (This is called “Gödel’s
First Incompleteness Theorem.”) Thus there can be no elegant “theory of
everything”: no reasonably simple, consistent principles can settle the answer
to every question. Furthermore, among the facts that a logical theory cannot
prove is the fact that its own theorizing is logically consistent. (This is called
“Gödel’s Second Incompleteness Theorem.”)

Later on we will state each of these facts more exactly, and we will work through
detailed arguments for each one of them. We’ll work up to this slowly, starting
by developing some basic skills and concepts for reasoning carefully about the re-
lationship between language and the world. But let’s start with a more informal
look.

The arguments for each of these facts rely on the same basic idea. The starting place
is the Liar Paradox. Let 𝐿 be the following sentence:
This sentence is not true.

Apparently, what 𝐿 says is just that 𝐿 is not true. So presumably, if 𝐿 is true, then
what 𝐿 says is so—that is, 𝐿 is not true. And presumably, if 𝐿 is not true, then what
𝐿 says is not so—that is, 𝐿 is true. But that means we have a contradiction either
way. This is very puzzling.

People have known about this puzzle since the ancient Greeks. For a long time
it was widely thought of as just a brain-teaser—not especially important. Maybe
there is something wrong with expressions like this sentence, but you might
reasonably think that the responsible policy is just to avoid using self-referential
sentences like 𝐿 for official purposes, and move on to other more serious questions.
But it turns out that this policy is not as easy to carry out as it seems—in a sense,
self-reference is inevitable. And taking this old puzzle seriously turns out to lead
us to some very important discoveries.

Here is another trick—a variation on the Liar Paradox. The word red applies to red
things.

For any thing 𝑥, the word red applies to 𝑥 if and only if 𝑥 is red.

Similarly, the word short applies to short things. In general:

For any thing 𝑥, the word short applies to 𝑥 if and only if 𝑥 is short.

CONTENTS 3

Some of the things that short applies to are short words. For example, the word
red is short. So the word short applies to red. The word short is also short, so
short applies to short. So we can say that short is self-applying. In contrast,
long is not a long word, so long is non-self-applying.

Now let’s look at how things go for this new word we have introduced:
non-self-applying.

The word non-self-applying applies to long

The word non-self-applying does not apply to short

Just like with red and short, we’d like to say in general,

For any thing 𝑥, the word non-self-applying applies to 𝑥 if and only
if 𝑥 is non-self-applying.

In other words:

For any thing 𝑥, the word non-self-applying applies to 𝑥 if and only
if 𝑥 does not apply to 𝑥.

This principle about non-self-applying seems very reasonable. But it leads to
disaster! What happens if we plug in the word non-self-applying itself? Then
we get:

non-self-applying applies to non-self-applying if and only if
non-self-applying does not apply to non-self-applying.

And this is logically contradictory. If non-self-applying does self-apply, then it
doesn’t, and if non-self-applying does not self-apply, then it does!

In this version of the puzzle we never used self-referential words like
this sentence. Instead of self-reference, we used self-application. We fed
a word to itself, and this landed us in serious trouble.

Feeding something to itself like this is the devious trick behind all of the main facts
we are going to study. For example, Cantor showed that if infinite sets were all the
same size, then in a sense you could “feed a set to itself” and arrive at a contradiction.
Roughly, you get to inexpressible properties by feeding descriptions to themselves,
you get to undecidable questions by feeding programs to themselves, and you get
to unprovable statements by feeding proofs to themselves. (This trick is sometimes
called “diagonalization,” for reasons we will talk about in Section 1.5.)

Let’s look at how this idea works for Gödel’s Theorem about unprovability. Waving
our hands a little, we can sketch an argument for a simplified version of this theorem.

4 CONTENTS

Suppose that we have some logical theory which is both reasonably powerful and
also reasonably simple. We can show that either this theory does prove something
false, or else it doesn’t prove something true.

The description shorter than 100 symbols is itself shorter than 100 symbols. In
a reasonably powerful logical theory, we should also be able to prove this statement.
"shorter than 100 symbols" is shorter than 100 symbols

Call this statement the self-application of the description shorter than 100 symbols.
So to put it another way, the description shorter than 100 symbols has a prov-
able self-application. In contrast, the following statement is false:
"does not contain a vowel" does not contain a vowel

So if our theory doesn’t prove false things, then we can’t prove that statement. In
other words, the description does not contain a vowel has an unprovable self-
application.

Now, it turns out that in any logical theory which is both reasonably powerful and
reasonably simple, we can write down this description, too:
has an unprovable self-application

Let’s call this description 𝐻 . The self-application of 𝐻 is the statement
"has an unprovable self-application" has an unprovable self-application

Let’s call this statement 𝐺. This is another equivalent way of restating 𝐺:
The self-application of H is not provable

But we just said that 𝐺 is the self-application of 𝐻! So in fact, what we just said is
equivalent to
G is not provable

To sum up, the statement 𝐺 is equivalent to the statement G is not provable.
And furthermore, if we’re careful, we can prove this equivalence in the logical the-
ory we started out with. Notice that 𝐺 is very similar to the Liar sentence 𝐿, except
that now we are talking about what is provable instead of what is true.

Finally, we ask, can we prove 𝐺 in our logical theory? If we can, then using the
equivalence, we can also prove G is not provable—which means we can prove
something false. But also, if we can’t prove 𝐺, then G is not provable is true.
Since this statement is equivalent to 𝐺, that means that 𝐺 is also true—whichmeans

CONTENTS 5

we can’t prove something true. So either there is a false statement that we can prove,
or else there is a true statement that we can’t prove.

This very brief overview of Gödel’s Theorem leaves a lot out, and it might seem
mysterious and suspicious at this point. To do everything properly, without so much
hand-waving, we’ll have to start by carefully investigating what sets, numbers, de-
scriptions, programs, and proofs are like. This will take quite a bit of work. (We’ll
get to the official version of this theorem in Section 8.5) But there is a big reward.
We finite beings can use these tools to explore the infinite world: to count, describe,
calculate, and reason. If we understand how these tools work—using precise lan-
guage and careful reasoning to learn about language and reasoning themselves—
then we can also understand their limits, and what is beyond them.

About This Text

Here are three ways in which I have aimed to make this text distinctive.

Philosophical

While I hope that students in other neighboring fields (like linguistics, computer
science, and mathematics) will also find it helpful, this book is primarily aimed
at people who are interested in philosophy, particularly advanced undergradutes
and beginning graduate students. The results in this course—the Theorems named
after Cantor, Tarski, Turing, Church, and Gödel—are not just bits of abstract math-
ematics: they are philosophical discoveries. Of course, they are also central to
other disciplines besides philosophy. And they are especially rigorous and well-
established, and they require some technical skills to understand. But it would be a
shame if we philosophers lose track of this part of our intellectual heritage for these
reasons. Forgetting about discoveries like these leads people to sad thoughts like
“philosophy makes no progress.”

What’s more, these discoveries are not just part of the philosophy of mathematics.
These Theorems are central facts in the philosophy of language and epistemology.
They also have important connections to metaphysics, philosophy of mind, decision
theory, and many other topics. But the historical presentation of these ideas, which
most texts faithfully transcribe, unfortunately obscures some of this. You might
come away frommany courses thinking that (for example) Gödel’s First Incomplete-
ness Theorem is a parochial brainteaser about “formal theories of arithmetic”—a
taste for which not that many of us acquire.

In this text, what takes center stage is not arithmetic but language. Languages used

6 CONTENTS

by finite beings (whether natural or artificial) typically consist of expressions that
are straightforwardly represented as finite strings of discrete symbols, like the let-
ters of the alphabet. Thus, rather than theories of arithmetic, we will think a lot
about theories of these strings. (Of course, we will still occasionally need to reason
about numbers, so they are not entirely absent.) This shift in focus will make some
of our results look unfamiliar to those who are already initiated. (For example, the-
ories of arithmetic take a back seat to theminimal theory of strings 𝖲.) But the shift
from theorems about numbers to theorems about strings is usually pretty straightfor-
ward, technically, and the string-centered approach is conceptually simpler. We can
almost entirely dispense with one conceptual hurdle from the historical approach:
the technique of Gödel-numbering. (This is still discussed in Section 6.11, since
while it is dispensable, of course it is still interesting that theories of strings can be
interpreted in a simple theory of arithmetic.)

I have also departed from historical presentations in other ways. In the 1930’s
three different equivalent definitions of computability were proposed: Gödel’s gen-
eral recursive functions, Church’s untyped lambda-calculus, and Turing’s machines.
Those who are familiar with this history might be surprised to find that this text
does not include any of these three topics. Nowadays the idea of a universal formal
system for representing algorithms is very familiar—not under any of these three
guises, but rather under the guise of a programming language. So in this text we
will study an elementary fragment of a modern programming language. (We use
Python, because it has especially tidy syntax, but pretty much any modern language
has an equivalent fragment.) Besides using more widely familiar concepts, another
nice pedagogical advantage of this approach is that we can use the very same tech-
niques to study the semantics of first-order logic and the semantics of programs.
This makes the parallels between first-order definable sets and effectively decidable
sets more straightforward. (Of course, this model of computation is also equivalent
to Gödel, Church, and Turing’s versions, so there is no real change in the content
of the theorems we prove.)

This text does not itself provide much detailed discussion of the philosophical ques-
tions that arise from these results, though I attempt to gesture at interesting con-
nections along the way. But I don’t think it’s as if the Theorems and their proofs
are a hard kernel of “mathematics” surrounded by a fuzzy penumbra of “philos-
ophy.” The Theorems and their proofs are philosophical theses and arguments,
themselves—theses and arguments displaying a distinctive degree of precision, dis-
tinctively intricate reasoning, and displaying all of their premises with a distinctive
degree of clarity. But these are virtues to which we can aspire with all philosophical
argumentation. (It should go without saying: not the only such virtues!)

CONTENTS 7

Accessible

This book presupposes that its readers have taken one previous course in formal
logic which goes as far as first-order predicate logic—ideally one that at least men-
tioned models and assignment functions, but this much isn’t absolutely essential. It
does not presuppose any experience with mathematics, or mathematical logic. In
particular, this text is not meant to presuppose any experience with reading or writ-
ing rigorous arguments (“informal proofs”). Rather, this text aims to teach those
skills, alongside the technical and philosophical content.

Because of this, we start things off at a slow, gentle pace, building up technical tools
from their foundations, introducing each new assumption as it arises. For students
with a bit more technical experience, it may be reasonable to skim over the first three
chapters pretty quickly. (But make sure not to skip Section 1.5, which introduces
one of the key ideas!)

I have also chosen not to use the Greek alphabet (which involves an unnecessary
extra deciphering step for students without the benefit of a classical education), and
I have stated things in words rather than just symbols as much as seems practical.
(I take the latter to be good practice even for experts.)

Skills-based

As far as I know, there is only one way for humans to learn this kind of material:
by doing it. When it comes to a technical argument, just reading it or hearing it
explained isn’t usually enough to really understand it at more than a superficial
level. You have to work it out yourself. You have to see how each step follows from
the previous; you have to get a feel for which parts of a proof are important, and
which are routine. You have to develop useful intuitions that give you a sense of
which results are going to work out in the end. False proofs should smell fishy. An
argument that seems like just a mass of details, one after another, is an argument
that you don’t fully understand yet.

Logic is often taught as a mass of details, one after another. (I’ve certainly been
guilty of teaching it this way—there are a lot of details, after all.) Our hope is to get
past that, to understand the important and beautiful parts. But we can’t do this (at
least, not very well) by just ignoring the details—rather, we have to get good enough
at dealing with details that they become automatic and recede into the background.
The way to do this is practice.

This text is intended to provide lots of practice, by providing lots of exercises. In
the end, the exercises add up to proofs of the central Theorems (Cantor, Tarski,

8 CONTENTS

Church, Turing, Gödel). Generally, whenever I provide a proof myself, it’s for one
of two reasons: either (a) to provide examples of an important style of reasoning
for what comes later, or (b) to save students from especially tedious or fiddly bits
of the argument. I’ve tried to teach all of the main ideas through exercises, to allow
students to learn things by doing them, rather than just being told.

When I teach this course, I use two different teaching modes. The first is a standard
instructor-led lecture, which I use mainly to present new concepts, work through
definitions, and do example exercises. The second mode is student-led, in which
students present their own solutions to exercises, discuss any questions that come
up about them, and collectively fix any problems. (I’ve found the logistics work
best if students sign up online for specific exercises before class. For a somewhat
larger class, you can give points just for volunteering, and choose which volunteer
actually presents by lottery or some other system. For a very large class, you’ll
probably need to try something else.) I roughly alternate sessions between the two
modes: in a course that meets twice a week, we’ll have one “lecture day” and one
“problem day.” (I take over a bit more of the time at the points in the course that
have a lot of new concepts: especially Chapter 1, Chapter 2, and Chapter 7.)

Be warned, this format takes a lot of class time. If you want to cover the material
more quickly, in order to get to some more advanced topics, you could present more
of the exercise solutions as part of a traditional lecture.

The starred sections can be skipped without losing the main thread. Some of them
go into background issues in more detail, and others are more advanced topics.

Acknowledgments

This text has been a long time in the making, and I have benefited from a lot of help
from a lot people. Thanks are due to all of the students at USC on whom I inflicted
early drafts of this text. The first draft, which consisted of my teaching notes for
PHIL 450 in the Fall of 2014, was particularly rough going, and I am very grateful
for those students’ patience.

I also owe special thanks to Cian Dorr, who “alpha tested” this text with his class at
NYU when it was still in a pretty rough form, in the Spring of 2017. He wrote me
many long emails that semester full of detailed ideas for improving things, many of
which I have incorporated.

Strategies for Proving Things

Art1 does not make Reason, but Reason makes Art;
and therefore as much as Reason is above Art, so
much is a natural rational discourse to be preferred
before an artificial …

Margaret Cavendish, The Blazing World (1668)

One of the central skills this text is meant to help you learn is showing that cer-
tain statements are true, by giving very careful arguments from clearly specified
premises, at a very high standard of precision.2 The way we do this is with in-
formal proofs. Here “informal” contrasts with the formalized proofs that we will
discuss later in the class (and which you might have practiced in previous logic
classes). We are writing our arguments in clear English, rather than in an artificial
language like predicate logic, and we are using any kind of clear reasoning that
shows that our conclusions follow from our premises, rather than restricting our-
selves to mechanical rules of the sort that a simple computer program could check.
But “informal” doesn’t mean sloppy, and it doesn’t mean that just anything goes.
You may never have had to write out rigorous proofs before, and that’s fine: this
text does not assume that you already have these skills. You’ll learn them.

Sometimes students don’t know how to get started on an exercise. The techniques
presented in this chapter give you a way to get started. These are all pretty “low-
level” techniques. With practice, they will become automatic, and when that hap-
pens you’ll be able to give more of your attention to the really interesting parts of
the proofs, instead of the basic details of “every” statements and “if” statements,
and what to suppose and what you have to show. Once you get good at it, prov-

1That is, artificial formal methods.
2This chapter is inspired by a series of blog posts by Tim Gowers: https://gowers.wordpress.com

/category/cambridge-teaching/basic-logic/

1

https://gowers.wordpress.com/category/cambridge-teaching/basic-logic/
https://gowers.wordpress.com/category/cambridge-teaching/basic-logic/

2 CONTENTS

ing things can be like making music—but we have to start by practicing scales and
arpeggios.

You don’t need to read all the way through this chapter before you start on Chapter 1.
I recommend instead that you keep this chapter close at hand when you are working
on the exercises. If you don’t know how to get started on an exercise, or if you feel
like you’re stuck, look here for some ideas about what you might want to do next.

If you look at an exercise and feel like you have no idea how to do it, don’t fear! You
don’t need to be able to see your way all the way from the beginning to the end, in
some single flash of inspiration. Start by just trying to take one step at a time. Try
to break up your problem into pieces that are just a little bit simpler. Keep doing
that, and a lot of times that will take you all the way to the solution.

0.1 Give yourself room

It might be tempting to try to start writing down your proof from the beginning,
and keep going until you reach the end. That doesn’t usually work. The activity of
discovering a proof and the activity of presenting or explaining a proof to others
are very different. You’re going to do both things, so to keep things clear you’re
going to need (at least) two pieces of paper: a discovery page, and a presentation
page. Once you have discovered the whole proof, using the techniques we’ll discuss,
then you can write it down neatly from beginning to end. (See the section “Putting
it together”, Section 0.6 below.)

0.2 Keep track of your goals

When you are working on a proof, you need to keep track of the answers to the two
most important questions.

1. What am I trying to show?
2. What relevant things do I already know?

When you start working on your proof, start by writing down the answers to these
questions. First write down “Show”, and the statement of what you are trying to
prove. Then write down “Suppose” (or “Assume” or “Given” or “Know”) and the
statements of the things that you already know.

You shouldn’t always try to write down everything you know. You can’t always tell
in advance what’s going to be relevant, and you can always add something else to
your list later when you think of it. But you should at least write down the things

0.3. PROVING AN “EVERY” STATEMENT 3

that are given to you in the statement of the exercise itself. You should also make
sure to look carefully at the other definitions, lemmas, theorems, and exercises that
come immediately before the exercise you’re working on, especially those that use
similar words or notation.

When you write these down, you should pay attention to the logical structure of
each statement. Is it an “if … then …” statement? A “for all …” statement? A
“there exists …” statement? There are different strategies to use for each of these
kinds of statement, so it’s important to figure out what kind you are dealing with.

As you go, your goals will change. (See the examples below.) You’ll need to keep
your notes organized so that you can easily tell what the answer is to the two key
questions at your current stage of progress: What am I trying to show? What rele-
vant things do I know?

0.3 Proving an “every” statement

Suppose this is your goal:

Show Every set is a subset of itself.

This is an “every” statement. We can rewrite it another way that makes its structure
more explicit:

Show For every set 𝐴, 𝐴 is a subset of 𝐴.

In this explicit form, an “every” statement has four parts.

1. “For every”. This tells us what kind of statement we are dealing with—a uni-
versal statement, which says that all of a certain kind of thing have a certain
property.

2. The kind of thing we are talking about: “set”. (This is called the restrictor.)

3. The letter 𝐴; this is a variable. It doesn’t matter very much which letter
we use, but we’ll want to choose a letter that isn’t too confusing. There are
conventions to use certain letters for certain kinds of things: for example, for
sets we’ll normally use the capital letters 𝐴, 𝐵, 𝐶 , or 𝑋, 𝑌 , 𝑍. I’ll follow
these conventions in the examples, but you haven’t learned them yet, so for
now just use whatever letter you think makes sense. We also want to avoid

4 CONTENTS

using a letter that we’re already using for some other purpose. If we need
to, we can add decorations to distinguish different variables from each other,
like 𝐴′, 𝐵2, or �̂�.

4. The property we are showing that every set has—“𝐴 is a subset of 𝐴”. (This
is called the matrix clause.)

In English—even in the relatively regimented English of technical writing—“every”
statements can come in a lot of forms. It’s important to be able to recognize them,
and to break them up into these four pieces. Here are some more examples (with
brackets around the restrictor and the matrix).

0.3.1 Example
(a) All ravens are black.

For every [raven] 𝑥, [𝑥 is black].

(b) Any consistent set of sentences has a model.

For every [consistent set of sentences] 𝑋, [𝑋 has a model].

(c) If 𝑓 is a function from 𝐴 to 𝐵, then the range of 𝑓 is a subset of 𝐵.

For every [function from 𝐴 to 𝐵] 𝑓 , [the range of 𝑓 is a subset of 𝐵].

(d) Every closed term contains at least one constant.

For every [closed term] 𝑎, [𝑎 contains at least one constant].

(e) Every set is smaller than its power set.

For every [set] 𝐴, [𝐴 is smaller than 𝐴’s power set].

(f) No set is as large as its own power set.

For every [set] 𝐴, [𝐴 is not as large as 𝐴’s power set].

The examples and exercises in this chapter use concepts that come from later parts
in the text—such as “range” or “closed term”. You aren’t expected to know what
any of these wordsmean at this point. You can apply these low-level techniques just
by looking at the form of the statements, without worrying about what a function is,
or a range, or a subset, or a term, and so on. (To practice proof techniques, we need
some subject matter to talk about, but we haven’t actually introduced any subject
matter yet, at this point in the text!)

0.3. PROVING AN “EVERY” STATEMENT 5

Now suppose we are trying to show an “every” statement, and we have identified
its logical structure.

For every [set] 𝐴, [𝐴 is a subset of 𝐴].

Now here is our strategy:

Suppose 𝐴 is a set
Show 𝐴 is a subset of 𝐴

That is, we’ll add “𝐴 is a set” to our list of things we are supposing, and we’ll
write down “Show 𝐴 is a subset of 𝐴.” This doesn’t solve the problem yet—but it
simplifies the problem. Our problem asked us to prove something complex, with
some logical structure. We have now broken down our goal into something less
complex.

Whenwe apply this strategy, it’s important to be careful with our choice of variables.
Onewaywe canmakemistakes is if we have already been using the letter𝐴 for some
other purpose that’s different from showing this “for all” statement; then there is a
risk of mixing up the two different uses of “𝐴.”

Here’s how this strategy works for our other example sentences.

0.3.2 Example
(a) All ravens are black.

Suppose 𝑥 is a raven
Show 𝑥 is black

(b) Any consistent set of sentences has a model.

Suppose 𝑋 is a consistent set of sentences
Show 𝑋 has a model

(c) If 𝑓 is a function from 𝐴 to 𝐵, then the range of 𝑓 is a subset of 𝐵.

Suppose 𝑓 is a function from 𝐴 to 𝐵
Show The range of 𝑓 is a subset of 𝐵

6 CONTENTS

(d) Every closed term contains at least one constant.

Suppose 𝑎 is a closed term
Show 𝑎 contains at least one constant

(e) Every set is smaller than its power set.

Suppose 𝐴 is a set
Show 𝐴 is smaller than 𝐴’s power set

(f) No set is as large as its own power set.

Suppose 𝐴 is a set
Show 𝐴 is not as large as 𝐴’s power set

0.3.3 Exercise
Identify the logical structure of each of the following “every” statements, and
use this structure to write down the new “suppose” and “show” statements you
would need to prove it.

(a) Every one-to-one correspondence is an onto function.

(b) Every set which is at least as large as the set of numbers is infinite.

(c) A set of sentences is logically consistent iff it has a model.

(d) For any sets 𝐴 and 𝐵, if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 = 𝐵.

(e) If 𝐴 is any non-empty set, there is a one-to-one function 𝐴 to 𝐵 or there
is an onto function from 𝐵 to 𝐴.

(f) No theory is simple, strong, consistent and complete.

0.4 Unpacking definitions

Suppose we have this goal:

Show 𝐴 is a subset of 𝐴.

0.4. UNPACKING DEFINITIONS 7

This involves a technical term “subset”, which has an official definition. We can
look it up in the relevant part of the textbook:

Definition 1.1.2. If 𝐴 and 𝐵 are sets, then 𝐴 is a subset of 𝐵 iff every
element of 𝐴 is an element of 𝐵. This is also written 𝐴 ⊆ 𝐵 for short.
We say 𝐴 is a proper subset of 𝐵 iff 𝐴 is a subset of 𝐵, but not the
same set as 𝐵.

We can use this definition to “unpack” the statement “𝐴 is a subset of 𝐴”, trans-
forming it into this:

Show Every element of 𝐴 is an element of 𝐴.

The same trick applies to technical notation which is expressed in symbols rather
than words. The notation

𝐴 ⊆ 𝐴

is defined to be a shorthand for “𝐴 is a subset of 𝐴”. So we can use the same
definition to unpack this in exactly the same way, as “Every element of 𝐴 is an
element of 𝐴.”

Notice that the particular letters that we used as variables in the definition don’t
matter. They are placeholders. Think of the 𝐴 and 𝐵 in the definition of “subset”
as holes, where we can plug in any sets we want. In this case, we have plugged the
same set 𝐴 into both spots in the definition—both the “𝐴” and the “𝐵” slots from
the definition of “𝐴 is a subset of 𝐵” get plugged up with 𝐴.

0.4.1 Example
We can use Definition 1.1.2 to unpack the following statements.

(a) 𝑋 is a proper subset of 𝑌

Every element of 𝑋 is an element of 𝑌 , and 𝑋 and 𝑌 are not the same set.

(b) 𝐵 ⊆ 𝐴

Every element of 𝐵 is an element of 𝐴.

(Pay attention to the order!)

0.4.2 Example
Here are some examples of how to unpack these definitions in different statements.

(a) There is a one-to-one function from 𝐴 to its power set.

8 CONTENTS

There is a function 𝑓 from 𝐴 to the power set of 𝐴 such that, for each 𝑎, 𝑎′ ∈
𝐴, if 𝑓𝑎 = 𝑓𝑎′, then 𝑎 = 𝑎′.

(b) No set has the same number of elements as its power set.

There is no set 𝑋 such that there is a one-to-one correspondence between 𝑋
and the power set of 𝑋.

(Notice that in order to unpack the definition, we introduced a variable 𝑋 for
the set we are talking about. The letter 𝑋 was arbitrary. We could have used
𝐴 or 𝐵 or 𝐴′ or something else if we wanted to. We just want to be clear, and
make sure that our choice doesn’t conflict with other variables we are already
using in the context of our proof.)

(c) The sentence ∀x(x = x) is a logical truth.

The sentence ∀x(x = x) is true in every structure.

(d) Every logical truth is a logical consequence of the empty set.

For every sentence 𝐴 which is true in every structure, 𝐴 is a logical conse-
quence of the empty set.

0.4.3 Exercise
Unpack the definitions from above in the following statements.

(a) 𝐶 is a logical truth.

(b) 𝑔 is a one-to-one function from 𝐵 to 𝐴.

(c) ℕ (the set of all natural numbers) is not a subset of the empty set.

(d) The successor function suc (which is a function from ℕ to ℕ) is one-to-one.

(e) The empty set is a proper subset of its power set.

(f) Every logical truth is consistent.

(g) There are one-to-one functions from 𝐴 to 𝐵 and from 𝐵 to 𝐴.

(All of the examples we’ve discussed here are examples of what are called explicit
definitions. Later on we’ll encounter a different, trickier kind of definition, called a
recursive definition.)

It can be tempting to try to unpack definitions as your very first line of attack on a
problem. But usually this isn’t a good idea. Notice that unlike most of our strategies,

0.5. PROVING AN “IF” STATEMENT 9

unpacking definitions turns simple statements into more complicated statements.
That means that if you do it right away, you make your problem more complicated.
Usually you want to wait to unpack definitions until after you’ve already applied
all the other strategies you can (like the “proving an ‘every’ statement” technique).
Sometimes you won’t have to unpack a definition at all to finish a problem. In those
cases, your solution will be easier to discover and easier to understand if you keep
the definition “packed in.”

A definition is like a suitcase. You can pack a lot of information into a definition,
and then carry it around your proof in a small tidy container. The right time to
unpack your suitcase is when you’ve arrived at the place where you’re going to use
what’s inside it.

0.5 Proving an “if” statement

Suppose we have this goal:

Show If 𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶 ,
then 𝐴 is a subset of 𝐶 .

The first thing to do is to identify its structure. In this case, we recognize that this
is an “if … then …” statement. Other than the “if” and “then”, it has two parts:

If [𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶], then [𝐴 is a subset of
𝐶].

We can think of the first piece,

𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶

as the “input” for the “if … then …” statement, and we can think of the second
piece

𝐴 is a subset of 𝐶

as its “output.” What we want to show is that we can get from the input to the
output. (These two pieces are called the antecedent and the consequent.) So here
is our strategy:

Suppose 𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶
Show 𝐴 is a subset of 𝐶 .

10 CONTENTS

That is, we can write down the first part in our list of things we are supposing, and
write down “𝐴 is a subset of 𝐶” as our new “to show”.

While we’re at it, we can split up the “and” statement. Sowe’ll add two assumptions:

Suppose 𝐴 is a subset of 𝐵
𝐵 is a subset of 𝐶

Show 𝐴 is a subset of 𝐶

Now that we have new things to suppose, and a new thing to show, we can go on
and apply more strategies to try to finish the proof. (“Unpacking definitions” is a
good one to go for next.)

0.5.1 Example
Identify the “if … then …” structure of the following statements, and use this to
write down the new “suppose” and “show” statements that you would use to prove
them.

(a) If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 = 𝐵.

Suppose 𝐴 ⊆ 𝐵
𝐵 ⊆ 𝐴

Show 𝐴 = 𝐵

(b) If there is an onto function from 𝐴 to 𝐵, then there is a one-to-one function
from 𝐵 to 𝐴.

Suppose There is an onto function from 𝐴 to 𝐵
Show There is a one-to-one function from 𝐵 to 𝐴

(c) If there is a one-to-one function from 𝐴 to 𝐵, then there is an onto function
from 𝐵 to 𝐴, unless 𝐴 is empty.

Suppose There is a one-to-one function from 𝐴 to 𝐵
𝐴 is not empty

Show There is an onto function from 𝐵 to 𝐴

0.6. PUTTING IT TOGETHER 11

(d) If 𝑋 ⊨ 𝐴 and 𝑌 , 𝐴 ⊨ 𝐵 then 𝑋, 𝑌 ⊨ 𝐵

Suppose 𝑋 ⊨ 𝐴
𝑌 , 𝐴 ⊨ 𝐵

Show 𝑋, 𝑌 ⊨ 𝐵

(Notice that you don’t even need to know what this notation means in order
to identify the logical structure.)

0.5.2 Exercise
Identify the “if … then …” structure of the following statements, and use this
to write down the new “suppose” and “show” statements that you would use to
prove them.

(a) If 𝐴 is no larger than 𝐵 and 𝐵 is no larger than 𝐶 , then 𝐴 is no larger than
𝐶 .

(b) If 𝑚 ≤ 𝑛, then either 𝑚 = 𝑛, or suc𝑚 ≤ 𝑛.
(c) If {𝐴, 𝐵} is consistent, then ¬𝐵 is not a logical consequence of 𝐴.

(d) If 𝑇 is sufficiently strong, axiomatizable, and consistent, then 𝑇 is incom-
plete.

0.6 Putting it together

0.6.1 Example
Suppose we are doing this exercise:

Prove that every set is a subset of itself

We start by writing down our goal.

Show Every set is a subset of itself

We don’t have any relevant facts to write down as “given” for this problem, but we
will want to make sure to keep the definition of “subset” handy.

Our first step is to identify the structure of this statement. It looks like an “every”
statement. Let’s rewrite it so its logical structure is very clear.

12 CONTENTS

Show For every set 𝐴, 𝐴 is a subset of 𝐴

Now we can break this up, given us a new goal:

Suppose 𝐴 is a set
Show 𝐴 is a subset of 𝐴

How can we solve this simpler problem? Our “given” and our “show” don’t look
like they have any more complex logical structure at this point, so it looks like it’s
time to unpack the definition of “subset.”

Suppose 𝐴 is a set
Show Every element of 𝐴 is an element of 𝐴.

But now the thing we have to show is completely obvious. (You could break it
down even further with the “every” strategy: assume 𝑎 is an element of 𝐴, and then
show 𝑎 is an element of 𝐴—which is trivial. But there is no need to go this far in
breaking it down.) So we’re done! That is, we’re done discovering the structure
of our informal proof. The last step is to put together all of our pieces in the right
order, to make the proof understandable to other people. Here is how this might go:

Let 𝐴 be a set. It is obvious that every element of 𝐴 is an element of 𝐴.
This means that 𝐴 is a subset of 𝐴. So every set is a subset of itself.

This paragraph looks pretty different from the fragments that we wrote down on
the way to finding it. Instead of a bunch of “givens” and “shows”, we have put
the whole thing together in logical order, from beginning to end. The order of
discovery is different from the order of justification. In the order of discovery, we
wrote down whatever was going to be helpful for us at the time for our next stage
of simplification. But in the order of justification, we want to write things down
step-by-step, so that each part of the proof comes immediately after what it relies
on for justification.

Roughly, the steps we took to find this proof correspond to the final structure of the
presented proof, not from beginning to end, but rather from the outside in. We can
represent the logical structure of our informal proof like this:

Let A be a set.
[It is obvious that]

0.6. PUTTING IT TOGETHER 13

every element of A is an element of A. [This means that]
A is a subset of A.

So every set is a subset of itself.

The “highest” or “outermost” level of logical structure is the thing we were origi-
nally trying to prove:

So every set is a subset of itself.

The next level in corresponds to the first strategy we used to prove this, the “prove
an “every” statement” strategy.

Let 𝐴 be a set. … 𝐴 is a subset of 𝐴.

The next level in corresponds to the next strategy we used, unpacking the definition
of “subset”

… every element of 𝐴 is an element of 𝐴. This means that …

And the final, deepest level corresponds to the last part of our process of discovery,
where we noticed that the only thing thing we had left to show was obvious.

It is obvious that …

Here’s the basic idea. After you have found the logical structure of your proof, by
breaking things down until your “Show” statement very obviously follows from
your “Suppose” statements, you need to retrace your steps. It’s helpful to start from
the end, looking at the last statement of your proof—the main thing you are trying
to show. Then ask “what strategy did I use to get to this point?” That tells you what
should go before that step in your polished presentation of the proof. Keep doing
this until the answer is “nothing—it was obvious”. This will give you the order in
which you need to write things down.

As for the actual words you write down, there is no mechanical recipe. The goal is
to communicate the steps of you proof in a way which is elegant, concise, accurate,
and easy to understand. Getting there takes practice and a sense of style.

Let’s look at another example.

0.6.2 Example
We have this goal:

Show For any sets 𝐴, 𝐵, and 𝐶 , if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 ,
then 𝐴 ⊆ 𝐶 .

14 CONTENTS

First we observe that this is an “every” statement. We can think of it as being built
up out of three different nested “every” statements (“For every set 𝐴, for every set
𝐵, for every set 𝐶 , …”). But it’s simpler to just handle all three of them at once.

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set

Show If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 , then 𝐴 ⊆ 𝐶

Next we notice that we have an “if … then …” statement that we can break down.
We’ll keep our old “suppose” statements and add some new ones.

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set
𝐴 ⊆ 𝐵
𝐵 ⊆ 𝐶

Show 𝐴 ⊆ 𝐶

This looks about as simple as we can get without unpacking definitions. So let’s do
that now. We’ll unpack the definition of ⊆ three times.

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set
Every element of 𝐴 is an element of 𝐵
Every element of 𝐵 is an element of 𝐶

Show Every element of 𝐴 is an element of 𝐶

At this point we could declare it obvious enough that what we want to show follows
from what we are supposing, and be done. But for the practice, let’s go ahead and
break this proof down into even more basic steps this time. Again, we have an
“every” statement to show. We can restate it, introducing a new variable:

For every [element of 𝐴] 𝑎, [𝑎 is an element of 𝐶].

0.6. PUTTING IT TOGETHER 15

So we can break it down again:

Suppose 𝐴 is a set
𝐵 is a set
𝐶 is a set
Every element of 𝐴 is an element of 𝐵
Every element of 𝐵 is an element of 𝐶
𝑎 is an element of 𝐴

Show 𝑎 is an element of 𝐶

And now it’s clear how to finish. We know 𝑎 is an element of 𝐴. One of our
assumptions tells us that this implies 𝑎 is an element of 𝐵. Then another assumption
tells us that this implies 𝑎 is an element of 𝐶 .

Now let’s put this all together, and write up our informal proof.

Let 𝐴, 𝐵, and 𝐶 be sets, and suppose that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 . Let 𝑎
be any element of 𝐴. Then since every element of 𝐴 is an element of
𝐵, 𝑎 is an element of 𝐵. And since every element of 𝐵 is an element
of 𝐶 , 𝑎 is an element of 𝐶 . This shows that every element of 𝐴 is an
element of 𝐶 . That is, 𝐴 ⊆ 𝐶 .

Once again, we can find the “order of discovery” here by looking at the proof from
the outside in, more or less. At the outermost level, we find the traces of the “prove
an ‘every’ ” strategy and the “prove an ‘if’ ” strategy that we began with.

Let 𝐴, 𝐵, and 𝐶 be sets, and suppose that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 . …
𝐴 ⊆ 𝐶 .

Looking a little bit further back from the end, we see a definition unpacked:

… every element of 𝐴 is an element of 𝐶 . That is …

A bit further in yet, we have our second “every” strategy:

Let 𝑎 be any element of 𝐴. … 𝑎 is an element of 𝐶 . This shows that
…

And at the middle of the proof we have our other two unpackings of the definition,
and our final observation about how they are related.

16 CONTENTS

Then since every element of 𝐴 is an element of 𝐵, 𝑎 is an element of
𝐵. And since every element of 𝐵 is an element of 𝐶 , 𝑎 is an element
of 𝐶 .

0.7 Using existence statements

Say we are trying to prove this:

If there is a one-to-one function from 𝐴 to 𝐵, and there is a one-to-one
function from 𝐵 to 𝐶 , then there is a one-to-one function from 𝐴 to 𝐶 .

We can start by splitting up the “if” statement:

Suppose There is a one-to-one function from 𝐴 to 𝐵 There is a
one-to-one function from 𝐵 to 𝐶

Show There is a one-to-one function from 𝐴 to 𝐶

We have written down three “there is” statements. These are called existential gen-
eralizations, and each of them says that there is at least one of some kind of thing.
(Even though we use the singular expression “a one-to-one function,” we do not
mean to imply that there can’t be more than one function like this.)

So we know that there is a one-to-one function from 𝐴 to 𝐵, but we don’t know
what specific function this is. How we can use this information? The first thing we
should do is give it a name. This gives us something more specific to hang onto
in our reasoning. We can replace our two suppositions with new, more specific-
looking suppositions:

Suppose 𝑓 is a one-to-one function from 𝐴 to 𝐵 𝑔 is a one-to-one
function from 𝐵 to 𝐶

Show There is a one-to-one function from 𝐴 to 𝐶

We have introduced two new variables, 𝑓 and 𝑔 as “names” for functions that we
are supposing to exist.

Just like when we are proving “for every” statements, we have to be careful with
our choice of variables. It’s important that we aren’t already using the letters 𝑓 or 𝑔
as names for some other things in this proof—otherwise we could get different uses
of “𝑓” mixed up, which would lead to mistakes. Beyond that, you can use whatever

0.7. USING EXISTENCE STATEMENTS 17

variable you want, but again there are certain conventions which help us keep track
of what kind of thing you are talking about. For example: 𝑓 , 𝑔, ℎ for functions, 𝐴,
𝐵, 𝐶 or 𝑋, 𝑌 , 𝑍 for sets, lower-case 𝑎 for an element of the set 𝐴, and so on.

(Note that we did not introduce a new variable for the “there is” statement we are
trying to show. That actually wouldn’t help at all.)

This helps, because now we can use things we know about one-to-one functions to
draw conclusions about the “specific” functions 𝑓 and 𝑔.
Like “for every” statements, “there is” statements can take a lot of different shapes,
even in the relatively regimented English of technical writing.

0.7.1 Example
Write down the “suppose” statements you would use to prove things from the fol-
lowing existential statements.

(a) There is a one-to-one correspondence between 𝐴 and 𝐵.

Suppose 𝑓 is a one-to-one correspondence between 𝐴 and 𝐵

(b) There is a proof of 𝐴.

Suppose 𝑃 is a proof of 𝐴

(c) 𝑋 has a model.

Suppose 𝑆 is a model of 𝑋

(d) Some subset of 𝑋 is inconsistent.

Suppose 𝑌 is a subset of 𝑋
𝑌 is inconsistent

(e) 𝑋 has a finite subset that entails 𝐴.

Suppose 𝑌 is a finite subset of 𝑋

18 CONTENTS

𝑌 entails 𝐴

(f) Not every model of 𝑋 satisfies 𝐴.

Suppose 𝑆 is a model of 𝑋
𝑆 does not satisfy 𝐴

0.7.2 Exercise
Write down the “suppose” statements you would use to prove things from the
following existential statements.

(a) There is an onto function from 𝑃 𝐴 to 𝐴.
(b) 𝑋 is the extension of some formula.
(c) 𝑇 has a countable model.
(d) Not every subset of 𝐴 is empty.
(e) Some program decides the set of logical truths.
(f) There is at least one odd prime.

0.8 Proving existence statements

The main way to that a certain kind of thing exists is to give an example. Suppose
we want to show that some set has at least two elements.

Show Some set has at least two elements

We could do this by coming up with some example of a set, and showing that that
specific set has at least two elements. So we can rewrite the goal like this:

Show ______ has at least two elements

Before we can do this, we have to figure out how to fill in the blank. For example,
we might do it like this:

Show The power set of the empty set has at least two elements

0.8. PROVING EXISTENCE STATEMENTS 19

The trick is to fill in the blank in a way that gives us a “Show” statement that we
can actually show. If put in the wrong thing, we can end up at a dead end. Then we
just have to backtrack and try filling in the blank some different way.

Filling in the blank to prove an existence statement is very often the trickiest part of
a proof. There is no mechanical rule for this. Sometimes it is easy to find the right
thing, but sometimes it requires creativity and insight. For example, here is one of
the theorems we will prove in Chapter 8:

Any consistent theory has a model.

We can break this down like this:

Suppose 𝑇 is a consistent theory
Show There is a model of 𝑇

Then we can rewrite our goal again:

Suppose 𝑇 is a consistent theory
Show ______ is a model of 𝑇

The hard part of this proof is figuring out how to fill in the blank. In fact, precisely
describing a model that we can use to fill in the blank ends up taking about ten
pages!

0.8.1 Example
Prove that there is no greatest number.

Proof
We can rewrite this in a more transparent logical form.

Show For any number 𝑛, some number is greater than 𝑛.

Using the “for every” trick:

Suppose 𝑛 is a number.
Show Some number is greater than 𝑛.

Our goal now is to prove an existence statement. So we have a blank to fill in.

20 CONTENTS

Suppose 𝑛 is a number.
Show ______ is greater than 𝑛.

Now we need to come up with some way of filling in the blank. What is some
number that we know is greater than 𝑛? Of course, the number will depend on what
𝑛 is, but that’s fine. Here we can use something that we happen to know: for any
number 𝑛, 𝑛 + 1 is greater than 𝑛. (We haven’t officially proved much of anything
about numbers yet, so we’ll just cheat here and bring in a fact from later.)

Now we can put this all together:

Let 𝑛 be any number. We know that 𝑛 + 1 is greater than 𝑛. So for any
number 𝑛, some number is greater than 𝑛. In other words, there is no
greatest number. □

0.9 “And” statements

Say we have this goal:

Show that any set is a proper subset of its power set.

Suppose 𝐴 is a set
Show 𝐴 is a proper subset of the power set of 𝐴.

Now we unpack the definition of “proper subset”

Suppose 𝐴 is a set
Show 𝐴 is a subset of the power set of 𝐴,

and 𝐴 is not the same set as the power set of 𝐴.

Our goal is an “and” statement. This means we really have two goals. Let’s split
them up.

Suppose 𝐴 is a set.
Show 𝐴 is a subset of the power set of 𝐴.

0.10. “IFF” STATEMENTS 21

Suppose 𝐴 is a set.
Show 𝐴 is not the same set as the power set of 𝐴.

What was one big problem is now two smaller problems, which we can tackle one
at a time. In each of these subproblems, we can use any of the assumptions we had
for the original problem.

In general, if you have to prove an “and” statement, you really have to prove two
different things. Split your problem up into two pieces, and take them one by one.

0.10 “Iff” statements

The word “iff” is an abbreviation for “if and only if”. For example:

Suppose 𝐴 is a set of sentences.
Show 𝐴 is inconsistent iff

𝐴 logically implies a contradiction.

We can rewrite this:

Suppose 𝐴 is a set of sentences.
Show If 𝐴 is inconsistent, then

𝐴 logically implies a contradiction,
and if 𝐴 logically implies a contradiction,
then 𝐴 is inconsistent.

So proving an “iff” statement amounts to proving an “and” statement. We can break
it up into two subproblems.

Suppose 𝐴 is a set of sentences.
Show If 𝐴 is inconsistent, then

𝐴 logically implies a contradiction.

Suppose 𝐴 is a set of sentences.
Show If 𝐴 logically implies a contradiction,

22 CONTENTS

then 𝐴 is inconsistent.

0.11 “Or” statements

Start with an example:

Suppose 𝐴 is a finite set.
Show Either 𝐴 is empty, or there is an onto function

from ℕ to 𝐴.

How do we tackle proving this “or” statement? One useful strategy is to think of it
like an “if” statement: if 𝐴 is not empty, then there is an onto function from ℕ to
𝐴. Then we can use our usual “if” trick.

Suppose 𝐴 is a finite set.
𝐴 is not empty.

Show There is an onto function from ℕ to 𝐴.

Since “or” statements are symmetrical, we could just as well try to do this the other
way around, if it seems easier.

Suppose 𝐴 is a finite set.
There is no onto function from ℕ to 𝐴.

Show 𝐴 is empty.

That gives us a way of approaching “or” statements in our “Show” section. What
if we have an “or” statement in the “Suppose” section?

Suppose 𝑛 is prime number or 𝑛 = 1
Show 𝑛 does not have three factors.

Our main tool for handling this kind of problem is called proof by cases. It’s similar
to proving an “and”: this time, instead of splitting up our “Show”, we split up our
“Suppose”. We have two subproblems to work on.

0.12. PROOF BY CONTRADICTION 23

Suppose 𝑛 is prime number
Show 𝑛 does not have three factors.

Suppose 𝑛 = 1
Show 𝑛 does not have three factors.

0.12 Proof by contradiction

All of the other techniques we have discussed so far in this chapter applied to very
specific contexts, where you are supposing or showing something with a specific
logical structure. But you can use proof by contradiction to prove anything at all.
The idea is pretty straightforward: if you want to prove something, assume the
opposite and show that a contradiction follows. For example, say we have this goal:

Suppose 𝑇 is a consistent theory.
Show 𝑇 is not representable in 𝑇 .

Then we can transform it into two goals:

Suppose 𝑇 is a consistent theory
𝑇 is representable in 𝑇

Show _______

Suppose 𝑇 is a consistent theory
𝑇 is representable in 𝑇

Show It is not the case that _______

We have to put the same statement in each of the two blanks. Using our extra
assumption, we have to prove something, and also prove the opposite. Then we can
conclude that the extra assumption must have been false.

We can fill in the blank with any statement at all. Sometimes it will be obvious
what to put there, but a lot of times it won’t be. This means that using proof by
contradiction is not totally mechanical, the way many of these rules are: it involves
insight and creativity.

24 CONTENTS

One good clue for when proof by contradiction is the right tool is when what you’re
trying to show is a “not” statement, like in the example above. When you take the
opposite of “𝑇 is not representable in 𝑇 ”, the “not” disappears and you end up with
a simpler “Suppose” statement, “𝑇 is representable in 𝑇 ”. But you can use proof
by contradiction even if there isn’t any explicit “not” around already. For example:

Suppose 𝐴 is a set
Show 𝐴 is either finite or infinite.

You can use proof by contradiction to transform this into two goals:

Suppose 𝐴 is a set
𝐴 is neither finite nor infinite

Show ______

Suppose 𝐴 is a set
𝐴 is neither finite nor infinite

Show Not: ______

(You can simplify these two goals further by rewriting “𝐴 is neither finite nor infi-
nite” as “𝐴 is not finite and 𝐴 is not infinite”.)

Because you can apply proof by contradiction to any goal at all, it can be tempting
to use it all the time. But proof by contradiction is a sledgehammer. It is powerful,
but it can make a big mess pretty fast if you use it in the wrong place. It can turn
specific, concrete goals that you can work with mechanically into blanks that you
might need to fill in with anything at all, which can make it harder to find proofs.
Overusing proof by contradiction can also make proofs harder to follow, if you
can prove the same thing more directly. So I generally recommend using proof by
contradiction sparingly, just when it is the right tool for the job.

0.13 Thinking big and thinking small

The strategies we have discussed so far are just a start. There are lots more strate-
gies that we’ll introduce as we go. But this should be enough to get going on the
exercises. This text will provide many more examples and lots more practice.

0.13. THINKING BIG AND THINKING SMALL 25

All of the strategies we’ve talked about in this chapte are very “small scale”. You
can use the logical structure of the individual statements that you are using in your
proof to break your problem down, step by step. With enough practice, all of these
small scalemoves will become automatic for you. If you have learned to drive, think
about the first time you sat behind the wheel: you had to think carefully about every
move of your feet and hands, every stop, every turn. But if you are an experience
driver, then those skills become so automatic that you might not even notice you
are doing them—you might get all the way across town “on autopilot”.

Once you get good at these small scale logical moves, what comes next? That’s
the fun part. Instead of focusing on getting out of your parking space and when to
change lanes, you can focus on where you are going and think about strategies for
how to get there.

As you are learning, you’ll need to move back and forth between two different ways
of thinking. When you are “thinking small”, you are thinking about the basic moves
you need to use to get from one logical statement to another. When you are “think-
ing big”, you are developing your intuitions and conceptual understanding for how
the things you are learning about really work—the things we have been ignoring
in this chapter, about what it means for a theory to be logically consistent, or what
infinite structures are like. One of the key skills you will develop is fluidly moving
back and forth between these two perspectives.

26 CONTENTS

Chapter 1

Sets and Functions

All things are woven together, and they make a sacred
pattern … For there is one universe made out of all
things …

Marcus Aurelius (121–180 CE), Meditations VII.9

Sometimes we reason about particular things one at a time; but it’s often useful
to reason about a whole collection of things taken together, all at once. We don’t
just look at what individual physical particles are like, but what the universe of all
such particles is like; not just what individual sentences are like, but what a whole
language is like. So it’s generally useful to have a theory of such “totalities”—a
theory of sets, and of how sets can be related to one another.

Our first job is to get familiar with some basic techniques for working with sets.
These techniques are grounded in certain basic assumptions, or “axioms,” about
what sets there are and what they are like. We’ll practice using these axioms to
carefully show other simple facts about sets.1

1.1 Sets

A set is a collection of elements.
1These “axioms” don’t make up a standard axiomatization of set theory. First, they are redundant:

with a bit of trickery, some of the axioms—like the “Axiom of Pairs”—can be derived from other
axioms and definitions. Second, they are not complete enough for some purposes. You can find
some further details about how these axioms are related to one another, and what has been left out,
in Section 1.6. But these issues don’t really matter for the main purposes of this course.

27

28 CHAPTER 1. SETS AND FUNCTIONS

1.1.1 Notation
Typically we’ll use capital letters as labels for sets, and lowercase letters as labels
for their elements. The notation 𝑎 ∈ 𝐴 means that 𝑎 is an element of 𝐴. Sometimes
we’ll describe a set by listing all of its elements. For example, the set

{Silver Lake,Echo Park}

has two members, both of which are neighborhoods in Los Angeles. The set

{0, 1 + 1, 2 + 3, 3 − 1}

has three members (even though the list we’ve written out has four terms in it)—
because 1 + 1 and 3 − 1 are the very same thing, the number two. (A set doesn’t
contain anything “more than once”.) In general, it’s good to remember that just
because we’re using two different labels, it doesn’t follow that they are labels for
two different things.

In general, if we say
𝐴 = {𝑎1, 𝑎2, …, 𝑎𝑛}

then this means that 𝑎1, 𝑎2, …, 𝑎𝑛 are all of the elements of 𝐴. Every one of those
things is an element of 𝐴, and nothing else besides those things is an element of 𝐴.

(We’ll also introduce a different “curly bracket” notation for sets in a moment.)

1.1.2 Definition
If 𝐴 and 𝐵 are sets, then 𝐴 is a subset of 𝐵 iff every element of 𝐴 is an element of
𝐵. This is also written 𝐴 ⊆ 𝐵 for short. We say 𝐴 is a proper subset of 𝐵 iff 𝐴 is
a subset of 𝐵, but not the same set as 𝐵.

(If the abbreviation “iff” is unfamiliar to you, read Section 0.10.)

1.1.3 Example
(a) For any set 𝐴, 𝐴 is a subset of 𝐴. (That is, 𝐴 ⊆ 𝐴. We say ⊆ is reflexive.)
(b) For any sets 𝐴, 𝐵, and 𝐶 , if 𝐴 is a subset of 𝐵, and 𝐵 is a subset of 𝐶 , then

𝐴 is a subset of 𝐶 . (That is, if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶 . We say ⊆ is
transitive.)

Proof
(a) Let 𝐴 be a set. We want to show that 𝐴 ⊆ 𝐴, which means that every element

of 𝐴 is an element of 𝐴. This is obvious: that is, for any 𝑎 ∈ 𝐴, obviously
𝑎 ∈ 𝐴. So we’re done.

1.1. SETS 29

(b) Let 𝐴, 𝐵, and 𝐶 be sets, and suppose that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 . We want to
show that 𝐴 ⊆ 𝐶 . So suppose that 𝑎 is any element of 𝐴; we want to show
that 𝑎 ∈ 𝐶 . Since 𝐴 ⊆ 𝐵, and we are supposing 𝑎 ∈ 𝐴, it follows that
𝑎 ∈ 𝐵. Then, since 𝐵 ⊆ 𝐶 , it follows that 𝑎 ∈ 𝐶 . So every element of 𝐴 is
an element of 𝐶 , which means that 𝐴 ⊆ 𝐶 . □

To know what a set is, you just have to know what elements it has. No two different
sets have the very same elements.

1.1.4 Technique (Proving sets are equal)
Say we have a set 𝐴 and a set 𝐵, and we want to know whether they are the same
set. (Remember—just because we are using different labels, it doesn’t follow that
they are labels for different things.) We can do this in two steps.

1. Show that every element of 𝐴 is an element of 𝐵. That is, we come up with a
subproof which begins “Let 𝑎 be any element of 𝐴”, and which ends “There-
fore, 𝑎 is an element of 𝐵”.

2. Show that every element of 𝐵 is an element of 𝐴. That is, we come up with a
subproof which begins “Let 𝑏 be any element of 𝐵”, and which ends “There-
fore, 𝑏 is an element of 𝐴”.

1.1.5 Example
If 𝐴 and 𝐵 are sets, then their intersection is a set 𝐴 ∩ 𝐵 whose elements are the
things which are elements of both 𝐴 and 𝐵. That is, to be explicit:

For any object 𝑥, 𝑥 ∈ 𝐴 ∩ 𝐵 iff 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵.

A union of 𝐴 and 𝐵 is a set 𝐴∪𝐵 whose elements are the things which are elements
of either one of the sets 𝐴 or 𝐵 (or maybe both). That is, to be explicit:

For any object 𝑥, 𝑥 ∈ 𝐴 ∪ 𝐵 iff 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵.

Show the following fact:
𝐴 ∩ (𝐴 ∪ 𝐵) = 𝐴

Proof
In order to show that the set 𝐴 ∩ (𝐴 ∪ 𝐵) is the same set as 𝐴, we need to show two
things:

1. Every element of 𝐴 ∩ (𝐴 ∪ 𝐵) is an element of 𝐴.

Let 𝑎 be any element of 𝐴 ∩ (𝐴 ∪ 𝐵). By the definition of intersection, this
means that 𝑎 is an element of 𝐴 and 𝑎 is an element of 𝐴 ∪ 𝐵. So obviously

30 CHAPTER 1. SETS AND FUNCTIONS

𝑎 ∈ 𝐴, and we’re done.

2. Every element of 𝐴 is an element of 𝐴 ∩ (𝐴 ∪ 𝐵).
Let 𝑎 be any element of 𝐴. To show that 𝑎 ∈ 𝐴 ∩ (𝐴 ∪ 𝐵), we need to show
that 𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐴 ∪ 𝐵. The first part (𝑎 ∈ 𝐴) we already know. For
the second part (𝑎 ∈ 𝐴 ∪ 𝐵), we need to show that 𝑎 ∈ 𝐴 or 𝑎 ∈ 𝐵, by the
definition of union. But since 𝑎 ∈ 𝐴, that means the first case holds, and
we’re done. □

1.1.6 Exercise
Using the definitions from Example 1.1.5, show the following facts:

(a) If 𝐴 ⊆ 𝐵, then 𝐴 ∪ 𝐵 = 𝐵.
(b) If 𝐴 ∪ 𝐵 = 𝐵, then 𝐴 ⊆ 𝐵.
(c) For any set 𝐶 , 𝐶 ⊆ 𝐴 and 𝐶 ⊆ 𝐵 iff 𝐶 ⊆ 𝐴 ∩ 𝐵.

The reason that Technique 1.1.4 works is the following fundamental general princi-
ple about sets—which we call an axiom, because it is one of our basic assumptions.

1.1.7 Axiom of Extensionality
If 𝐴 is a subset of 𝐵 and 𝐵 is a subset of 𝐴, then 𝐴 and 𝐵 are the very same set.
That is, 𝐴 = 𝐵.

In other words, if 𝐴 and 𝐵 have the exact same elements—that is, every element of
𝐴 is an element of 𝐵, and also every element of 𝐵 is an element of 𝐴—then 𝐴 and
𝐵 are exactly the same set. Again, what this axiom tells us, practically, is that if 𝐴
and 𝐵 are sets, and we want to show that 𝐴 = 𝐵, then we should first show that
𝐴 ⊆ 𝐵, and next show that 𝐵 ⊆ 𝐴.

The proof of Example 1.1.5 implicitly relies on the Axiom of Extensionality. So
does any proof that uses Technique 1.1.4 to prove sets are equal.

1.1.8 Example
Suppose 𝐴 is the set {1, 2, 3, 4, 5}. It’s often useful to “separate out” some of the el-
ements of this set into another set—such as the set containing just the odd elements
of 𝐴, which is {1, 3, 5}. We can label this set

{𝑎 ∈ 𝐴 ∣ 𝑎 is an odd number}
Similarly,

{𝑎 ∈ 𝐴 ∣ 𝑎 is prime} = {2, 3, 5}

1.1. SETS 31

And the set
{𝑎 ∈ 𝐴 ∣ 𝑎 is greater than 10}

is the empty set, since no elements of 𝐴 are greater than 10.

1.1.9 Example
For any sets 𝐴 and 𝐵, there is a set difference of 𝐴 and 𝐵, containing just those
elements of 𝐴 which are not in 𝐵. This is denoted 𝐴 − 𝐵. The existence of this set
follows from Separation. The difference of 𝐴 and 𝐵 is the set

{𝑎 ∈ 𝐴 ∣ 𝑎 is not an element of 𝐵}

Or more briefly:
𝐴 − 𝐵 = {𝑎 ∈ 𝐴 ∣ 𝑎 ∉ 𝐵}

1.1.10 Technique (Defining a Subset)
Suppose we have a set 𝐴, and we want to come up with an example of a subset of
𝐴. We can do this using our special curly brace notation. We can write down:

Let 𝐵 = {𝑎 ∈ 𝐴 ∣ }.

Then we fill in the blank with some property. This should be a property that the
elements of the subset we want have in common, and which no other elements of 𝐴
have. Once we have written this down, we know that the elements of 𝐵 are exactly
the things which are elements of 𝐴 that have the special property we wrote in the
blank. That is, we know that every element of 𝐵 is an element of 𝐴 that has the
special property. We also know that any element of 𝐴 that has the special property
is an element of 𝐵.

Again, the reason this technique works is because of another general principle about
sets.

1.1.11 Axiom of Separation
Let 𝐹 be any property. For any set 𝐴, there is a set 𝐵 such that, for any thing 𝑎:
𝑎 is an element of 𝐵 iff 𝑎 is an element of 𝐴 that has the property 𝐹 . The special
notation we use for this is

𝐵 = {𝑎 ∈ 𝐴 ∣ 𝐹 (𝑎)}
where 𝐹 (𝑎) is a statement that says that 𝑎 has the property 𝐹 .

There is something tricky about the Axiom of Separation. I have stated it in terms
of properties. But this raises lots of philosophical questions. What are properties?

32 CHAPTER 1. SETS AND FUNCTIONS

Are there any such things? What are they like? This also raises technical questions:
what exactly counts as a legitimate application of the Axiom of Separation?

There are standard ways of stating the Axiom of Separation that either avoid or
answer these philosophical questions. (There is more than one way to do it, and
occasionally they give subtly different answers to the question of “what counts.”)
But these alternative ways of making the Axiom of Separation more precise rely
on concepts and tools that come much later in this text. For practical purposes,
we can go ahead and use this intuitive version for now, with our intuitive sense
of “properties”, and postpone the difficulties until we’re better equipped to handle
them. Still, we can look ahead a bit to at least understand the general idea.

One way of restating the Axiom of Separation is as an axiom schema (which we
will discuss in Section 5.4). Instead of a single axiom, what we really have are
infinitely many different axioms: every single way of replacing 𝐹 (𝑎) with some
precise statement about 𝑎 gives you a different axiom. One of these axioms says:

For any set 𝐴, there is a set 𝐵 such that, for any thing 𝑎: 𝑎 is an element
of 𝐵 iff 𝑎 is an element of 𝐴 and 𝑎 is a non-empty set.

Another axiom says:

For any set 𝐴, there is a set 𝐵 such that, for any thing 𝑎: 𝑎 is an element
of 𝐵 iff 𝑎 is an element of 𝐴 and 𝑎 is an odd number.

And so on. Every way of filling in the blank gives you another axiom. These are
called instances of the Axiom Schema of Separation. But to make this idea totally
precise, we would need to be more precise about what counts as an instance. What
things can you write down in the blank and get a legitimate axiom? You can get
paradoxes if you’re not careful about this. To state the rules carefully, we’ll need a
theory of “things you can write down”—that is, a theory of linguistic expressions.
We’ll be working on that soon (particularly in Section 2.4, Section 3.2, and Chap-
ter 5).

A second way of restating the Axiom of Separation uses what’s called second-order
logic (Chapter 9). Second-order logic lets us “generalize in predicate position.”
Putting it roughly, instead of just saying “anything”, we can also say “anyhow.” For
any way for a thing to be, there is a subset of 𝐴 that includes just the elements of 𝐴
that are that way.

But we are getting way ahead of ourselves. For now, while we should note that there
are philosophical and technical subtleties here, we should be able to get by using
our intuitive understanding of properties. When we define a subset, we can fill in
the blank with any description of an element that seems clear and precise enough.

1.1. SETS 33

1.1.12 Example
Here are some more examples of using separation notation to define subsets. Let
𝐶 = {Los Angeles,San Diego,San Jose}.

𝐴1 = {𝑐 ∈ 𝐶 ∣ 𝑐 is in Southern California }
𝐴2 = {𝑐 ∈ 𝐶 ∣ 𝑐 is not San Diego}
𝐴3 = {𝑐 ∈ 𝐶 ∣ the population of 𝑐 is less than 100 }

We can also describe the same sets by explicitly listing their elements.

𝐴1 = {Los Angeles,San Diego}
𝐴2 = {Los Angeles,San Jose}
𝐴3 = {} (the empty set)

1.1.13 Exercise
Let 𝑈 be a set, and let 𝐴 and 𝐵 be subsets of 𝑈 . Write down the definitions
of “union” and “intersection” (Example 1.1.5) using “separation notation” as in
Technique 1.1.10. This shows that there is a set which is a union of 𝐴 and 𝐵,
and there is a set which is an intersection of 𝐴 and 𝐵.

Here’s another basic principle about sets.

1.1.14 Empty Set Axiom
There is a set with no elements. This is called the empty set. It is labeled ∅ or {}.

(In fact, we could equivalently have used the simpler axiom that there is a set. Then
we could use Separation to conclude that there is a set with no elements: the set
{𝑎 ∈ 𝐴 ∣ 𝑎 ≠ 𝑎}.)

1.1.15 Example
There is a unique set with no elements. (This justifies us in calling it “the empty
set” rather than “an empty set”.)

Proof
What we need to show is that if 𝐴 and 𝐴′ are both empty sets—that is, if 𝐴 and 𝐴′

each have no elements—then 𝐴 = 𝐴′. We show this in two steps.

1. Every element of 𝐴 is an element of 𝐴′.

This is true because 𝐴 has no elements! A counterexample would have to be
an element of 𝐴 which is not an element of 𝐴′, and clearly there are no such

34 CHAPTER 1. SETS AND FUNCTIONS

things.

2. Every element of 𝐴′ is an element of 𝐴.

This works just the same way, this time because 𝐴′ has no elements.

So 𝐴 = 𝐴′ (by Extensionality). □

1.1.16 Technique (Existence and Uniqueness)
When we need to show that there is exactly one 𝐹 , or (in other words) that there is
a unique 𝐹 , it’s usually helpful to break this up into two steps.

1. Existence. We show that there is at least one 𝐹 .

2. Uniqueness. We show that there is at most one 𝐹 .

The Uniqueness part means that for any 𝑥 and 𝑦 which are both 𝐹 ’s, 𝑥 and 𝑦 are the
very same thing. So to prove there is at most one 𝐹 , this is a good strategy. Suppose
that 𝑥 is 𝐹 and 𝑦 is 𝐹 ; then show that 𝑥 = 𝑦.

1.2 Functions

Every building in Los Angeles has an address: a certain sequence of numbers and
letters that labels that building, like 3709 Trousdale Parkway. To keep track of
the relationship between buildings and addresses, we can consider an address func-
tion, which we’ll call “address”. For each building 𝑏, address 𝑏 is its address. Func-
tions are useful throughout logic, because we are often interested in relationships
like this one: for example, the relationship between things in the world and the
words that we use to label them.

Here’s another example: for every number, there is another number which immedi-
ately follows it. Zero is followed by one, one by two, and so on. We can represent
this relationship between numbers using a function, which is called the successor
function, and which we’ll call suc for short. For each number 𝑛, there is a number
suc 𝑛 which is one more than 𝑛.

In general, suppose that 𝐴 and 𝐵 are sets. A function from 𝐴 to 𝐵 assigns an
element of 𝐵 to each element of 𝐴. For every element 𝑎 ∈ 𝐴, there is some element
of 𝐵 which is the result of applying 𝑓 to 𝑎. This is labeled 𝑓𝑎. So for every 𝑎 ∈ 𝐴,
𝑓𝑎 ∈ 𝐵.

(Some people write function application with lots of extra parentheses, always writ-
ing 𝑓(𝑎) rather than 𝑓𝑎. But I won’t do that unless things would be unclear other-

1.2. FUNCTIONS 35

wise.)

1.2.1 Notation
The notation 𝑓 ∶ 𝐴 → 𝐵 means that 𝑓 is a function from 𝐴 to 𝐵. We call 𝐴 the
domain of 𝑓 , and 𝐵 the codomain of 𝑓 .

For example, the domain of the address function is the set of Los Angeles buildings,
and its codomain is the set of all strings of symbols. The domain and the codomain
of the successor function suc are both the set of natural numbers {0, 1, 2, …}.

(Sometimes functions are defined to be certain special sets—for instance, as sets
of ordered pairs—see Section 1.6 for some discussion. But we won’t bother with
that for now. We’ll just treat functions as another basic kind of thing alongside
sets. Another thing to be aware of is that some people think of a function as some-
thing that can have more than one codomain, while we’ll talk about a thing that has
both some particular domain and some particular codomain. Terminology among
mathematicians is split on this point. We’ll come back to this below.)

We should distinguish the codomain from another thing. Not every string of sym-
bols is the address of some building: there is no building in Los Angeles with the
address 00000 Main Stresjkkj. So there are elements of the codomain of the
address function—which I said was the set of all strings of symbols—which are not
actually “hit” by the function. We say that the string 00000 Main Stresjkkj is
not in the range of the address function.

1.2.2 Definition
The range of a function 𝑓 ∶ 𝐴 → 𝐵 is the set of elements of 𝐵 that are assigned
by 𝑓 to some element of 𝐴. That is,

range 𝑓 = {𝑏 ∈ 𝐵 ∣ for some 𝑎 ∈ 𝐴, 𝑓𝑎 = 𝑏}

(What is the range of the successor function?)

We have three different ways of coming up with functions: the list method, the rule
method, and the relation method.

1.2.3 Example
Let 𝐴 be the set {1, 2, 3} and let 𝐵 be the set of cities in California. Then we can
define a function 𝑓 ∶ 𝐴 → 𝐵 by specifying the value of 𝑓 for each element of 𝐴.

36 CHAPTER 1. SETS AND FUNCTIONS

For instance, we could say

𝑓(1) = Los Angeles
𝑓(2) = San Diego
𝑓(3) = San Jose

This definition of 𝑓 uses the list method.

We can also use some handy alternative notation for this kind of function definition:

[1 ↦ Los Angeles, 2 ↦ San Diego, 3 ↦ San Jose]

You can read this notation as saying “the function that takes 1 to Los Angeles, 2 to
San Diego, and 3 to San Jose.”

1.2.4 Technique (Defining a function using an explicit list of values)
If a set 𝐴 is finite, we can define a function 𝑓 ∶ 𝐴 → 𝐵 by listing out its values one
by one.

1.2.5 Example
Another way we could define a function 𝑔 ∶ 𝐴 → 𝐵 is using a rule:

𝑔(𝑛) = the 𝑛th largest city in California (in 2015) for every 𝑛 ∈ {1, 2, 3}

1.2.6 Technique (Defining a function using a rule)
This is the most common way of coming up with a function 𝑓 ∶ 𝐴 → 𝐵: we
precisely describe what “output” value 𝑓 should have for each “input” value 𝑎 in 𝐴.
For example, we can define the function from numbers to numbers that takes each
number to the number which is six more than it:

𝑓𝑛 = 𝑛 + 6 for each number 𝑛

In general, to come up with a function from 𝐴 to 𝐵, first choose a name, like “𝑓”
(though we would might want to use something more descriptive, like “address” or
“suc” or “greatest-prime-divisor”). Then write down

𝑓(𝑎) = for every 𝑎 ∈ 𝐴

Fill in the blank with a description of an element of 𝐵, where this description can
depend on 𝑎. For example “𝑎 + 6”, “𝑎’s great-grandfather”, or “the first letter of
𝑎” are all fine descriptions (though which of them make sense will depend on what
kind of thing 𝑎 is—that is, for instance, whether the elements of 𝐴 include numbers,
people, or words).

1.2. FUNCTIONS 37

The third way to come up with a function is the trickiest. Instead of giving an
explicit rule for what the value 𝑓𝑎 should be, we can describe a general relationship
that each input should have to its output. Here are some examples.

• Every building in Los Angeles has an address: that is, for every building 𝑏 in
Los Angeles, there is a string of symbols which is an address for 𝑏. So there
is a function, address, from buildings in Los Angeles to strings of symbols
such that, for each building 𝑏, address 𝑏 is an address for 𝑏.

• Every number has a successor: that is, for every number 𝑛, there is some
number that comes immediately after 𝑛. So there is a function, suc, from
numbers to numbers such that, for each 𝑛, suc 𝑛 comes immediately after 𝑛.

• For every number 𝑛, there is some number which is two more than 𝑛. So
there is a function 𝑓 from numbers to numbers such that, for every number
𝑛, 𝑓𝑛 is two more than 𝑛.

• For every building 𝑏 in Los Angeles, there is a person within one mile of 𝑏.
So there is a function 𝑔 from buildings to people such that, for each building
𝑏, 𝑔𝑏 is a person within one mile of 𝑏.

• For every non-empty set of numbers 𝐴, there is some number 𝑛 which is an
element of 𝐴. So there is a function ℎ from non-empty sets of numbers to
numbers such that, for each non-empty set of numbers 𝐴, ℎ𝐴 ∈ 𝐴.

Notice that the first three examples, each “input” in the domain stands in the rela-
tionship to just one object in the codomain. A building only has one address, and a
number only has one successor, and likewise a number has only one number which
is two more than it. But the last two examples aren’t like that. In the last two ex-
amples, we didn’t uniquely describe the output of the function for each input. But
we did describe what relationship the output should stand in to the input, and that
is enough.

1.2.7 Technique (Coming up with a function using a relation)
Say we want to come up with a function from 𝐴 to 𝐵. We can do this by describing
a relationship that should hold between the inputs and outputs of the function. First,
choose a name for the function, like 𝑓 . Then write down this:

For each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, if 𝑓𝑎 = 𝑏, then ______________.

Fill in the blank with some relationship that should hold between 𝑎 and 𝑏. You’re
not quite done: in order to conclude that there is a function like this, you first need
to show this:

38 CHAPTER 1. SETS AND FUNCTIONS

For each 𝑎 ∈ 𝐴, there is some 𝑏 ∈ 𝐵 such that _______________.

Here you fill in the blank with the same relation that you wrote down in the first
blank. Once you have shown this, then you’re good to go: you can conclude that
there is a function that satisfies the relation you wrote down.

Notice that there’s another way of writing down the key property of your function
𝑓 , which is a little more concise. Instead of saying

For each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, if 𝑓𝑎 = 𝑏, then 𝐹 (𝑎, 𝑏).

(where 𝐹 (𝑎, 𝑏) is the relationship between 𝑎 and 𝑏 that you want) you could write
this equivalent thing instead:

For each 𝑎 ∈ 𝐴, 𝐹 (𝑎, 𝑓𝑎)

This is just another more concise way of saying that the relation 𝐹 holds between
each input 𝑎 and its corresponding output 𝑓𝑎. To justify this, what you need to
prove first is

For each 𝑎 ∈ 𝐴, there is some 𝑏 ∈ 𝐵 such that 𝐹 (𝑎, 𝑏).

(Of course, what you actually write down depends on which relation 𝐹 stands for.)

The “rule” method for defining a function is really just a more specific version of
the “relation” method. If we define the function 𝑓 using a rule

𝑓(𝑎) = for each 𝑎 ∈ 𝐴

Then we can think of this as defining 𝑓 using a relation, like this:

For each each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, if 𝑓(𝑎) = 𝑏 then 𝑏 = .

Here we fill in the blank with the very same description that we used for our rule.

Furthermore, the “list” method for defining functions is really just a more specific
version of the “rule” method. For example, we can think of our function

[1 ↦ Los Angeles, 2 ↦ San Diego, 3 ↦ San Jose]

as defined by the three-part rule

𝑓(𝑛) =
⎧⎪
⎨
⎪⎩

Los Angeles if 𝑛 = 1
San Diego if 𝑛 = 2
San Jose if 𝑛 = 3

1.2. FUNCTIONS 39

So in fact, all three of these techniques for coming up with functions are versions
of the “relation” method, and they are all based on the same fundamental principle.
We can state the basic general principle like this.

1.2.8 Axiom of Choice
Let 𝐹 be a relation. Let 𝐴 and 𝐵 be sets. If for every 𝑎 ∈ 𝐴 there is some 𝑏 ∈ 𝐵
such that 𝐹 (𝑎, 𝑏), then there is a function 𝑓 ∶ 𝐴 → 𝐵 such that for every 𝑎 ∈ 𝐴,
𝐹 (𝑎, 𝑓𝑎).

This principle is also tricky in the sameway as theAxiom of Separation. I stated it in
terms of a relation 𝐹 . But again, it would be hard work to give a theory of relations,
in addition to our theory of sets and functions. Again, oneway tomake this principle
precise is to think of it as an axiom schema: we get a different axiom for each way
of replacing 𝐹 (𝑎, 𝑏) with a precise description of a relationship between 𝑎 and 𝑏.
To make this fully precise, we would have to spell out the rules for what statements
about 𝑎 and 𝑏 you are allowed to “plug in” for 𝐹 (𝑎, 𝑏). We can do that using ideas
that come later in the text. But in practice, we can get by with common sense.

As it happens, Choice is more controversial than the rest of standard set theory, for
a couple of reasons. First, Choice has some very surprising consequences when it
comes to infinite sets. One famous example is the Banach-Tarski Theorem: you
can use Choice to prove that a unit sphere can be divided into four pieces that
can be rigidly rearranged to form two unit spheres, each exactly like the original.
Second (and relatedly), unlike the other standard axioms of set theory, Choice is
non-constructive. Choice tells us that there are functions that we have no way of de-
scribing uniquely. This challenges the philosophical idea that mathematical objects
are things that we mentally “construct” in some sense.

These controversies are entirely about the kind of applications of Choice where we
know that for every 𝑎 there is at least one 𝑏 such that 𝐹 (𝑎, 𝑏), but we don’t know
that for every 𝑎 there is exactly one 𝑏 such that 𝐹 (𝑎, 𝑏). For most of what we do in
this text, we could get by with a restricted “Axiom of Function Existence,” which
only applies in the “exactly one” case. But a few things in this text really do rely
on the full power of “at least one” Choice. In this text, I don’t bother to carefully
distinguish the things that rely on full-fledged Choice from the things that don’t.

Now let’s turn to another basic technique for working with functions.

1.2.9 Example
Recall the functions 𝑓 and 𝑔 from Example 1.2.3, which take the numbers in
{1, 2, 3} to cities in California. As it happens, though we used different definitions,

40 CHAPTER 1. SETS AND FUNCTIONS

𝑓 and 𝑔 are the very same function. The largest city in California is Los Angeles,
the second largest is San Diego, and the third largest is San Jose. The functions 𝑓
and 𝑔 have the same “output” for every “input.” Furthermore, there is no more to
a function than what “output” it has for each “input”—it doesn’t matter how this
relationship is described. So 𝑓 and 𝑔 are the same function.

1.2.10 Technique (Proving Functions are Equal)
Say 𝑓 and 𝑔 are functions from 𝐴 to 𝐵, and we want to show that 𝑓 = 𝑔—that is,
we want to show that 𝑓 and 𝑔 are the same function. (Again, remember that just
because we are using two different names for the function, that doesn’t mean 𝑓 and
𝑔 are different functions!) To show this, we need to show that 𝑓 and 𝑔 have the
same “output” for each possible “input”. The proof usually goes like this:

Let 𝑎 be any element of 𝐴. [Fill in reasoning.] So 𝑓𝑎 = 𝑔𝑎. Therefore,
𝑓 = 𝑔.

Here is a simple example.

1.2.11 Example
Let 𝟙 be a set with exactly one element. Prove that for any set 𝐴, there is exactly
one function from 𝐴 to 𝟙.

Proof
Showing that there is exactly one of something has two parts (Technique 1.1.16).

Existence. Let 𝑥 be the single element of the set 𝟙. For any set 𝐴, there is a function
𝑓 ∶ 𝐴 → 𝟙 defined by the rule 𝑓𝑎 = 𝑥 for each 𝑎 ∈ 𝐴.

Uniqueness. Consider any functions 𝑓 ∶ 𝐴 → 𝟙 and 𝑔 ∶ 𝐴 → 𝟙. We will show that
𝑓 = 𝑔. To show this, let 𝑎 ∈ 𝐴. Then since 𝑓𝑎 ∈ 𝟙, and 𝑔𝑎 ∈ 𝟙, and 𝟙 contains
only one element, we know 𝑓𝑎 = 𝑔𝑎. Since this holds for every 𝑎 ∈ 𝐴, this proves
that 𝑓 = 𝑔. □

Once again, the reason this strategy works is because of a fundamental general
principle about functions—another axiom.

1.2.12 Axiom of Function Extensionality
For any functions 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐵, if 𝑓𝑎 = 𝑔𝑎 for every 𝑎 ∈ 𝐴, then
𝑓 = 𝑔.

1.2. FUNCTIONS 41

Extensionality and Choice work together to tell us what functions are like. Choice
guarantees that there are enough functions, and Extensionality guarantees that there
are not too many functions.

1.2.13 Exercise
Suppose 𝟚 is a set with exactly two elements, which we’ll call True and False.
We can think of functions to 𝟚 as “tests”, which say True for things that pass the
test and False for the rest.

If 𝑋 is a subset of 𝐴, we can define a function from 𝐴 to 𝟚 which we call the
characteristic function of 𝑋, or char𝑋 ∶ 𝐴 → 𝟚 for short. Intuitively, this is
the function that says whether something is an element of 𝑋. For every 𝑎 ∈ 𝐴,

(char𝑋)𝑎 =
{

True if 𝑎 ∈ 𝑋
False otherwise

We can also go the other way around. If 𝑓 ∶ 𝐴 → 𝟚 is a function, we can define
a subset of 𝐴 that includes just the things that pass the 𝑓 -test. This is called the
kernel of 𝑓 , or ker 𝑓 .

ker 𝑓 = {𝑎 ∈ 𝐴 ∣ 𝑓𝑎 = True}

(a) Show that for any set 𝑋 ⊆ 𝐴,

ker(char𝑋) = 𝑋

(b) Show that for any function 𝑓 ∶ 𝐴 → 𝟚,

char(ker 𝑓) = 𝑓

Here’s a special feature of the address function: no two buildings have exactly the
same address. (Maybe this isn’t quite true, since there can bemore than one building
on the same lot. But let’s ignore this complication.) In other words, for any two
different buildings 𝑏 and 𝑏′, address 𝑏 and address 𝑏′ are two different strings. Or to
put that the other way around, for any buildings 𝑏 and 𝑏′, if address 𝑏 = address 𝑏′,
then 𝑏 = 𝑏′. A function like this is called one-to-one: it never takes two or more
inputs to one output.

On the other hand, as we noted earlier, there are many different strings of symbols
which are not addresses of any building at all, like alfkj/404.html. We say that
this function is not onto: its range does not completely “cover” the set of strings of

42 CHAPTER 1. SETS AND FUNCTIONS

symbols.

1.2.14 Definition
(a) A function 𝑓 ∶ 𝐴 → 𝐵 is one-to-one (or injective) iff for each 𝑎, 𝑎′ ∈ 𝐴, if

𝑓𝑎 = 𝑓𝑎′ then 𝑎 = 𝑎′.

(b) A function 𝑓 ∶ 𝐴 → 𝐵 is onto (or surjective) iff for each 𝑏 ∈ 𝐵 there is some
𝑎 ∈ 𝐴 such that 𝑓𝑎 = 𝑏

(c) A function 𝑓 ∶ 𝐴 → 𝐵 is a one-to-one correspondence (or bijective) iff it
is both one-to-one and onto.

Here’s another way of putting this. The elements of the domain of a function are its
“possible inputs,” and the elements of the codomain of a function are its “possible
outputs.” Each possible input results in some possible output. For a one-to-one
function, each possible output is the result of at most one possible input. For an
onto function, each possible output is the result of at least one possible input. Thus,
for a one-to-one correspondence, each possible output is the result of exactly one
possible input.

1.2.15 Exercise
Give an example (other than the address function) of a function which is …

(a) One-to-one but not onto.

(b) Onto but not one-to-one.

(c) One-to-one and onto.

1.2.16 Exercise
(a) For any function 𝑓 ∶ 𝐴 → 𝐵, 𝑓 is onto iff the range of 𝑓 is 𝐵.

(b) For any sets 𝐴 and 𝐵, there is a one-to-one function 𝑓 ∶ 𝐴 → 𝐵 iff there
is a one-to-one correspondence from 𝐴 to some subset of 𝐵.

1.2.17 Example
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 are each one-to-one, then there is a one-to-one
function from 𝐴 to 𝐶 .

Proof
Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 be one-to-one functions. We can use these

1.2. FUNCTIONS 43

functions to define a function ℎ ∶ 𝐴 → 𝐶 , like this:

ℎ(𝑎) = 𝑔(𝑓𝑎) for every 𝑎 ∈ 𝐴

Intuitively, we are chaining the two functions together: first apply 𝑓 , then apply 𝑔.
We need to check that the resulting function ℎ is one-to-one. Let 𝑎, 𝑎′ ∈ 𝐴, and
suppose that ℎ𝑎 = ℎ𝑎′. That is,

𝑔(𝑓𝑎) = 𝑔(𝑓𝑎′)

Since 𝑔 is one-to-one, this tells us that

𝑓𝑎 = 𝑓𝑎′

Then since 𝑓 is one-to-one, this tells us that

𝑎 = 𝑎′

This shows that for any 𝑎 and 𝑎′ in 𝐴, if ℎ𝑎 = ℎ𝑎′, then 𝑎 = 𝑎′, which means that
ℎ is one-to-one. □

1.2.18 Exercise
(a) If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 are each onto, then there is an onto function

from 𝐴 to 𝐶 .

(b) If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 are each one-to-one correspondences, then
there is a one-to-one correspondence from 𝐴 to 𝐶 .

1.2.19 Exercise
If 𝐵 is a non-empty subset of 𝐶 , and there is an onto function from 𝐴 to 𝐶 , then
there is an onto function from 𝐴 to 𝐵.

1.2.20 Definition
Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐴 be functions. We say 𝑔 and 𝑓 are inverses iff we
have both

𝑔(𝑓(𝑎)) = 𝑎 for every 𝑎 ∈ 𝐴
𝑓(𝑔(𝑏)) = 𝑏 for every 𝑏 ∈ 𝐵

That is, the two functions 𝑓 and 𝑔 undo each other.

1.2.21 Proposition
Every one-to-one correspondence has an inverse.

44 CHAPTER 1. SETS AND FUNCTIONS

Proof
Suppose 𝑓 ∶ 𝐴 → 𝐵 is a one-to-one correspondence. That is, 𝑓 is one-to-one and
onto. Since 𝑓 is onto, we know

For each 𝑏 ∈ 𝐵, there is some 𝑎 ∈ 𝐴 such that 𝑓𝑎 = 𝑏.

Then by Choice, that means there is a function 𝑔 ∶ 𝐵 → 𝐴 such that,

𝑓(𝑔𝑏) = 𝑏 for every 𝑏 ∈ 𝐵

That tells us half of what we need to prove that 𝑔 is an inverse of 𝑓 . For the other
half, suppose 𝑎 ∈ 𝐴. Then, by the way we chose 𝑔, we have

𝑓(𝑔(𝑓𝑎)) = 𝑓𝑎

Since 𝑓 is one-to-one, this implies that 𝑔(𝑓𝑎) = 𝑎. So 𝑔 is an inverse of 𝑓 . □

1.2.22 Exercise
Every function that has an inverse is a one-to-one correspondence. That is, if
𝑓 ∶ 𝐴 → 𝐵 has an inverse 𝑔 ∶ 𝐵 → 𝐴, then 𝑓 is a one-to-one correspondence.

The previous two facts, taken together, tell us that a function is a one-to-one corre-
spondence if and only if it has an inverse. That means that, from now on, you can
think of “function with an inverse” as if it was an alternative definition of “one-to-
one correspondence,” right there alongside the official definition “function which
is one-to-one and onto.” When you are doing any exercise involving one-to-one
correspondences, you can unpack that in either of these two equivalent ways. You
should go straight to whichever version makes the exercise easier to solve.

1.2.23 Exercise
For any sets 𝐴 and 𝐵, if there is a one-to-one correspondence from 𝐴 to 𝐵, then
there is also a one-to-one correspondence from 𝐵 to 𝐴.

1.3 Ordered Pairs

Sometimes we want to work with functions with more than one input (or more than
one output). For example, addition takes two numbers 𝑚 and 𝑛 and spits out a single
number 𝑚 + 𝑛. One way to approach this would be to work out a whole separate
theory of “multiple-input functions” in addition to the “single-input functions”—
but that would end up repeating lots of work. A nicer way to do it is to think of a

1.3. ORDERED PAIRS 45

function that takes two numbers as its input as really being a function that takes one
thing, a pair of numbers, as its input. That is, addition is a function from pairs of
numbers to numbers.

An ordered pair (𝑎, 𝑏) is something whose first element is 𝑎, and whose second
element is 𝑏. Unlike a set, the elements of a pair are ordered (as the name suggests).
The ordered pair (1, 2) is different from the ordered pair (2, 1). In contrast, the set
{1, 2} is the very same thing as the set {2, 1}, because they have the same elements.

1.3.1 Axiom of Pairs
For any sets 𝐴 and 𝐵, there is a set 𝐴×𝐵 whose elements are called ordered pairs.
Each ordered pair in 𝐴 × 𝐵 has a first element, which is an element of 𝐴, and a
second element, which is an element of 𝐵. For any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, there is
exactly one ordered pair whose first element is 𝑎, and whose second element is 𝑏.
This pair is labeled (𝑎, 𝑏).

1.3.2 Exercise
Let 𝟘, 𝟙, and 𝟚 be sets with 0, 1, and 2 elements, respectively. How many ele-
ments do the following sets have? Explain your answers.

(a) 𝟙 × 𝟚
(b) 𝟚 × 𝟘
(c) (𝟚 × 𝟚) × 𝟚

1.3.3 Exercise
Show that for any sets 𝐴 and 𝐵, there is a one-to-one correspondence between
𝐴 × 𝐵 and 𝐵 × 𝐴.

1.3.4 Exercise
For any set 𝐴, the diagonal of 𝐴 × 𝐴 is the set of all ordered pairs of the form
(𝑎, 𝑎). That is, it’s the set

{(𝑎1, 𝑎2) ∈ 𝐴 × 𝐴 ∣ 𝑎1 = 𝑎2}

Show that for any set 𝐴, there is a one-to-one correspondence between 𝐴 and
the diagonal of 𝐴 × 𝐴.

46 CHAPTER 1. SETS AND FUNCTIONS

1.3.5 Exercise
For any sets 𝐴, 𝐵, and 𝐶 , there is a one-to-one correspondence between 𝐴×𝐵)×
𝐶 and 𝐴 × (𝐵 × 𝐶).

1.3.6 Exercise
For any function 𝑓 ∶ 𝐴 → 𝐵, there is a set of ordered pairs in 𝐴 × 𝐵 called the
graph of 𝑓 : this is the set of pairs

{(𝑎, 𝑏) ∣ 𝑓𝑎 = 𝑏}

Suppose that 𝑋 is a subset of 𝐴×𝐵. Say that 𝑋 is functional iff, for each 𝑎 ∈ 𝐴,
there is exactly one 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) is in 𝑋. Show that 𝑋 is functional iff
𝑋 is the graph of some function from 𝐴 to 𝐵.

1.4 Higher-Order Sets and Functions

Sets and functions become more powerful when we start to consider sets of sets,
and sets of functions, and functions whose inputs and outputs are themselves sets
or functions. These are “higher-order” sets and functions. Let’s start with a simple
example.

1.4.1 Axiom of Power Sets
For any set 𝐴 there is set of all subsets of 𝐴. This is called the power set of 𝐴, or
𝑃 𝐴 for short. In other words, for every 𝐵,

𝐵 ∈ 𝑃 𝐴 iff 𝐵 ⊆ 𝐴

1.4.2 Example
The power set of {0, 1} is the four-membered set

{{}, {0}, {1}, {0, 1}}

1.4.3 Exercise
(a) For any set 𝐴, there is a one-to-one function from 𝐴 to 𝑃 𝐴.

(b) For any non-empty set 𝐴, there is an onto function from 𝑃 𝐴 to 𝐴.

Similarly, it is often useful to consider sets of functions.

1.4.4 Axiom of Functions
For any sets 𝐴 and 𝐵, there is a set containing every function from 𝐴 to 𝐵. This set

1.4. HIGHER-ORDER SETS AND FUNCTIONS 47

is labeled 𝐵𝐴, or 𝐴 → 𝐵.

1.4.5 Exercise
For each function 𝑓 ∶ 𝐴 → 𝐵, the range of 𝑓 is a subset of 𝐵: the set of elements
of 𝐵 which are equal to 𝑓𝑎 for some 𝑎 ∈ 𝐴 (Definition 1.2.2). In other words,
for each function 𝑓 ∈ 𝐵𝐴, there is a set

range 𝑓 ∈ 𝑃 𝐵

So this defines a higher-order function

range ∶ 𝐵𝐴 → 𝑃 𝐵

Is the range function one-to-one? Is it onto? Justify your answers.

1.4.6 Exercise
Suppose 𝐴 and 𝐵 are sets. If 𝐴 is not empty, then there is a one-to-one function
from 𝐵 to 𝐵𝐴.

1.4.7 Exercise
In Exercise 1.2.13 we defined the characteristic function for a subset 𝑋 ⊆ 𝐴 to
be a certain function char𝑋 ∶ 𝐴 → 𝟚. So this defines a higher-order function:

char ∶ 𝑃 𝐴 → 𝟚𝐴

Show that this function is a one-to-one correspondence.

1.4.8 Example
For any set 𝐴, there is a one-to-one correspondence from 𝐴𝟚 (the set of functions
from a two-element set to 𝐴) to 𝐴 × 𝐴 (the set of ordered pairs of elements of 𝐴).

Proof
Let’s call the two elements of 𝟚 “1” and “2”. The rough idea is that being given a
value for 1 and a value for 2 amounts to the same thing as being given two values,
in order, which amounts to the same as being given an ordered pair of values.

First we will define a function from 𝐴𝟚 to 𝐴 × 𝐴, and then we will show that it is
one-to-one and onto. We can define a function 𝑓 as follows:

𝑓ℎ = (ℎ1, ℎ2) for each function ℎ ∶ 𝟚 → 𝐴

48 CHAPTER 1. SETS AND FUNCTIONS

To show that 𝑓 is one-to-one, suppose that ℎ and ℎ′ are each functions from 𝟚 to
𝐴, and 𝑓ℎ = 𝑓ℎ′. That is, (ℎ1, ℎ2) = (ℎ′1, ℎ′2). That means that these ordered
pairs have the same first element and the same second element, so ℎ1 = ℎ′1 and
ℎ2 = ℎ′2. Since 1 and 2 are the only elements of 𝟚, this shows that ℎ and ℎ′ have
the same output for every input. So by Function Extensionality, ℎ = ℎ′. So 𝑓 is
one-to-one.

To show that 𝑓 is onto, suppose that (𝑎, 𝑎′) is any element of 𝐴 × 𝐴. We want to
show that there is some element ℎ in 𝐴𝟚 such that 𝑓ℎ = (𝑎, 𝑎′). And there is: we
can let

ℎ = [1 ↦ 𝑎, 2 ↦ 𝑎′]

Then 𝑓ℎ = (ℎ1, ℎ2) = (𝑎, 𝑎′), which is what we wanted. □

1.4.9 Exercise
Let 𝟙 be a set with exactly one element. For any set 𝐴, there is a one-to-one
correspondence from 𝐴 to 𝐴𝟙.

1.4.10 Exercise
Let 𝐴, 𝐵, and 𝐶 be any sets. There is a one-to-one correspondence between
𝐶𝐴×𝐵 (the set of two-place functions from 𝐴 × 𝐵 to 𝐶) and (𝐶𝐵)𝐴 (the set of
higher-order functions from 𝐴 to functions from 𝐵 to 𝐶).

(Applying this one-to-one correspondence is called “currying” a function, or
sometimes “Schönfinkelizing” it, after the two people who independently dis-
covered it, Curry and Schönfinkel.)

1.5 The Uncollectable

It is very useful to collect together some things into a single thing—a set. This
move from many things to a single set is very natural, and you might think that it
just amounts to an entirely innocent redescription. What difference could there be
between there being some people, and there being a set of people?

But things are not so straightforward. Not every way of picking out some things
picks out a set. Some things cannot be “gathered together” in a single set. This is
weird! It might not be feasible to bring some things into the same room, because
there are too many of them or they are too big or too far apart. But putting some
elements into a set isn’t like putting them in a room. For example, there is a set

1.5. THE UNCOLLECTABLE 49

containing the Moon, the Eiffel Tower, every finite string of letters which does not
appear in any book in the Library of Congress, and the number seven. If there
are sets as gerrymandered and arbitrary as this, it is hard to imagine what could
possibly prevent some things from all going together in a set. We are faced with a
very puzzling and counterintuitive result.

The proof that some things don’t form a set is very short, but it uses a clever trick.
As we have discussed, sets can be elements of “higher-order” sets. Can a set be
an element of itself ? We have not said anything about this one way or the other.
Normally this is ruled out by an extra axiom, called the Axiom of Foundation, which
says (in part) that set membership can never go around in a circle. We won’t need
the Axiom of Foundation for the purposes of this text. But the clever trick uses the
idea of trying to “feed a set to itself.”

1.5.1 Exercise (Russell’s Paradox)
Call a set 𝑋 a self-member iff 𝑋 is an element of 𝑋. Call 𝑋 a non-self-member
iff 𝑋 is not a self-member. Show that there is no set that contains all and only
the non-self-members.

(Note that the Axiom of Foundation would imply that all sets are non-self-
members. But we don’t have to use this axiom to do this problem.)

1.5.2 Exercise
(a) There is no set of all sets.
(b) There is no universal set containing everything there is.

These limits on set-formation are the reason why we stated the Axiom of Separation
in the careful way that we did. The Axiom of Separation lets us cut down a set
using some description of its elements. For example, if we start with a set of all the
numbers, then we can cut it down to a set of all the odd numbers. But Separation
doesn’t let us build up a set from some arbitrary description. For example, we can’t
write down

{𝑥 ∣ 𝑥 ∉ 𝑥}

and expect this to pick out a set—in fact, there is no such set, because of Russell’s
Paradox. Instead, if we start with a set 𝐴, we can write down

{𝑥 ∈ 𝐴 ∣ 𝑥 ∉ 𝑥}

By Separation, this will give us a set—the set of all elements of 𝐴 which are not
self-members. There is nothing paradoxical about this set. (In fact, assuming the

50 CHAPTER 1. SETS AND FUNCTIONS

Axiom of Foundation, which implies there are no self-members, this will just be
the same set 𝐴 that we started with.)

Russell’s paradox kind of feels like a party trick. But it is really important, for two
different reasons. First, it is foundationally important: the surprising fact that not
just any things form a set, and in particular that there is no universal set, is crucial to
understanding how set theoryworks at all. It makes a big technical difference to how
we state our basic axioms, and a big philosophical difference to how we think about
what sets are. Second, the devious trick we used in Russell’s paradox is important—
feeding sets to themselves in order to get a contradiction. This self-application
trick (which is often called “diagonalization”) will be used over and over again in
this text: it shows up along the way to almost all of the central theorems in this
course, about what is uncountable, inexpressible, undecidable, and unprovable. So
it’s worth going slowly to make sure we really understand what is going on here.
While we’re at it, we can also work out a more general lesson.

Let’s consider an analogous puzzle (Russell [1918] 2009, 101). A certain small En-
glish community in 1918 consists only of clean-shaven men (a Cambridge college,
say). One of these clean-shaven men is a barber. Someone tells us:

The barber shaves all the men in the community who do not shave
themselves, and only them.

But this can’t be true! Does the barber shave himself? If so, then he shaves someone
who shaves himself, which contradicts what we are told. If not, then he fails to shave
someone who does not shave himself, which again contradicts what we are told. So
this situation is impossible (and not just because of the implausibility of Oxbridge
social structure): nobody shaves just those people who do not shave themselves.

This was just the same reasoning as Russell’s paradox, except instead of considering
the relation “𝑥 is a an element of 𝑦”, we considered the relation “𝑥 is shaved by 𝑦.”
Looking at it this waymakes it clear that nothing depends onwhich relation wewere
talking about—there is a lesson here which is not specifically about either elements
or shaving.

We can also redescribe things in terms of functions, instead of relations. Let 𝐴 be
the set of men in that community, and let 𝑓 be the function that takes each person 𝑎
to the set of people that 𝑎 shaves. (It’s fine if 𝑓 takes some people to the empty set.)
Call this “the shaving function.” The shaving function is a function 𝑓 ∶ 𝐴 → 𝑃 𝐴,
such that, for any people 𝑎1 and 𝑎2 in 𝐴,

𝑎2 ∈ 𝑓𝑎1 iff 𝑎1 shaves 𝑎2

1.5. THE UNCOLLECTABLE 51

Now we can restate the lesson of the “barber paradox” in terms of the shaving
function. What it told us is that there is a certain set of men 𝑋 (namely, the set
of men who do not shave themselves) such that nobody shaves just the men in 𝑋.
Anybody who did that would be like the paradoxical barber, who shaves himself
if and only if he doesn’t shave himself, which is impossible. In short, there is no
𝑎 ∈ 𝐴 such that 𝑓𝑎 = 𝑋. This is not a contradiction: what it tells us is simply that
the set 𝑋 is not in the range of the shaving function 𝑓 . So what we have proved is
that the shaving function is not onto.

Again, this lesson has nothing special to do with shaving. Our reasoning applies
equally well to any set 𝐴, and any function 𝑓 ∶ 𝐴 → 𝑃 𝐴. This general fact turns
out to be very important.

1.5.3 Exercise (Cantor’s Theorem)
For any set 𝐴, there is no onto function from 𝐴 to 𝑃 𝐴.

Hint. Use the same reasoning as the barber paradox to show that for any function
𝑓 ∶ 𝐴 → 𝑃 𝐴, there is a set 𝑋 ⊆ 𝐴 which is not in the range of 𝑓 .

Notice that we can also use Cantor’s Theorem to give an alternative proof that there
is no set of all sets. Suppose there were a set 𝑆 that contained every set. Then
in particular every subset of 𝑆 would also be in 𝑆. That means we would have
𝑃 𝑆 ⊆ 𝑆. But then we could define an onto function from 𝑆 to 𝑃 𝑆: for example,
we could take each 𝑋 ∈ 𝑃 𝑆 to itself, and if there are any sets left over we could
take them to the empty set.2 This would contradict Cantor’s Theorem.

In a moment we’ll come back to why Cantor’s Theorem matters. First, though, let’s
look at the proof idea—the self-application trick—from a couple other perspectives.

Here is a way of picturing the self-application trick that gives it the name “diagonal-
ization.” Take a simple example where the elements of the set 𝐴 are just Al, Bea,
and Cece. Then consider any function 𝑓 from elements of 𝐴 to subsets of 𝐴. Here
is an example of a function like this:

Al ↦ { Al, Bea }
Bea ↦ { }
Cece ↦ { Al, Cece }

(The unusual spacing is just to keep the same elements visually lined up for each
set.) To show that 𝑓 is not onto, we need a rule for finding a subset of 𝐴 which is

2The sets that are “left over” would be “impure” sets containing elements that are not themselves
sets.

52 CHAPTER 1. SETS AND FUNCTIONS

not in the range of 𝑓 . This rule should work not just for this example, but for any
choice of a set 𝐴 and a function 𝑓 ∶ 𝐴 → 𝑃 𝐴.

We can represent this function in a slightly different way. As we showed in Exer-
cise 1.2.13, we can describe a subset 𝑋 ⊆ 𝐴 by answering a series of True-or-False
questions: for each element of 𝐴, we just need to know whether or not it is in 𝑋. So
we can draw a picture of this particular function 𝑓 by listing the answers to these
questions:

Al Bea Cece
Al ↦ True True False

Bea ↦ False False False
Cece ↦ True False True

As before, the rows of this diagram correspond to the “inputs” to the function 𝑓 ,
which are just the elements 𝑎 ∈ 𝐴. The list of Trues and Falses in row 𝑎 correspond
to the “output” set 𝑓𝑎, represented by its characteristic function. Row Al, column
Cece says False, because Cece is not an element of 𝑓(Al). Row Cece, column Al
says True, because Al is an element of 𝑓(Cece). In general, at any row 𝑎1 and
column 𝑎2, the table says True if 𝑎2 ∈ 𝑓𝑎1, and it says False if 𝑎2 ∉ 𝑓𝑎1. (Make
sure you see why this table matches the definition of 𝑓 given above.)

We are trying to come upwith a recipe that, given any table like this, gives us a set 𝑋
that is not represented by any row of the table. To do that, it’s enough to guarantee
that for each row, 𝑋 disagrees with the table for at least one True-or-False question
in that row. That is, for each row 𝑎1, there is some element 𝑎2 ∈ 𝐴 such that either
𝑎2 is in 𝑓𝑎1 but not in 𝑋, or else 𝑎2 is in 𝑋 but not in 𝑓𝑎1.

Here’s a trick that accomplishes this: we can work our way down the diagonal of
the table: row Al, column Al; row Bea, column Bea; row Cece, column Cece. If we
make sure that our set 𝑋 doesn’t match any of these, then 𝑋 is different from every
row of the table in at least one place. That is, we can make sure that 𝑋 disagrees
with the Al-row about Al, and disagrees with the Bea-row about Bea, and disagrees
with the Cece-row about Cece. Since the diagonal says “True, False, True”, we
just want to flip this and say “False, True, False”. That is, we can let 𝑋 be the set
which does not contain Al, which does contain Bea, and which does not contain
Cece—that is, in this case it’s the set {Bea}.
In general, the diagonal of this table tells us, for each 𝑎 ∈ 𝐴, whether 𝑎 is an element
of 𝑓𝑎. The trick is to consider the set that “flips” the diagonal, by including 𝑎 iff
𝑎 is not an element of 𝑓𝑎. This brings us back to the very same Russell-style set
we considered before: the set {𝑎 ∈ 𝐴 ∣ 𝑎 ∉ 𝑓𝑎}, the set of elements which are not
among the things “shaved by” themselves.

1.5. THE UNCOLLECTABLE 53

Here’s one more perspective on Russell and Cantor’s arguments, which connects
them to an idea we will explore more deeply later (Section 6.7). The Liar Paradox
is about the sentence
This sentence is not true.

Call this sentence 𝐿. Since apparently what 𝐿 says is just that 𝐿 is not true, it seems
that

(*) 𝐿 is true iff 𝐿 is not true

Is 𝐿 true? If so, then by (*) 𝐿 is not true, which is a contradiction. Alternatively, if
𝐿 is not true, then by (*) 𝐿 is true, so again we have a contradiction. Since we have
a contradiction either way, we have a paradox.

Russell’s Paradox and Cantor’s Theorem have the same structure as a variant of the
Liar Paradox, called Grelling’s Paradox. Unlike the original Liar, this variant does
not depend on a self-referential sentence. Adjectives, like short, interesting, or
simple, are words that can be truly applied to some things but not others. (Let’s
ignore the problems of vagueness for now, and pretend that all of these adjectives
are perfectly precise.) The extension of an adjective is the set of things that it truly
applies to. So if 𝐴 is the set of adjectives and 𝐷 is some set of things, then the
extension function for 𝐷 is a function 𝑓 ∶ 𝐴 → 𝑃 𝐷 that takes each adjective 𝑎 ∈ 𝐴
to the set of things in 𝐷 that 𝑎 truly applies to.

Words are themselves among the things that adjectives can apply to: for instance,
red is a short word, so the adjective short applies to red. Furthermore, short
is a short word, so short applies to itself; long is not a long word, so long does
not apply to itself. Some adjectives self-apply, and others don’t. Now consider the
set of all adjectives which do not self-apply. Is there any adjective which has this
set as its extension? Suppose there were such an adjective: in particular, suppose
that the adjective non-self-applying applies just to those adjectives which do not
self-apply. For all adjectives 𝑎:

non-self-applying applies to 𝑎 iff 𝑎 does not apply to 𝑎

Does non-self-applying self-apply? If so, then it applies to some adjective which
self-applies—namely non-self-applying itself—contradicting the assumption.
If not, then it fails to apply to some adjective which does not self-apply—again,
non-self-applying itself—again contradicting the assumption.

(This reasoning is just like the “barber paradox”; but unlike the “barber paradox”,
this case seems genuinely paradoxical, like the Liar: after all, non-self-applying
is an expression we can understand, that applies to some adjectives, like short and

54 CHAPTER 1. SETS AND FUNCTIONS

not others, like long. So what else could its extension be, if not the set of adjectives
which do not self-apply? This is a hard philosophical problem.)

Let 𝑓 be the extension function for 𝐴, which takes each adjective in 𝐴 to the set of
adjectives that 𝑎 truly applies to. So the set of adjectives that do not self-apply is
the set

𝑋 = {𝑎 ∈ 𝐴 ∣ 𝑎 ∉ 𝑓𝑎}
The reasoning we just went through shows that there is no adjective 𝑎 such that
𝑓𝑎 = 𝑋. Once again, 𝑓 is not onto. Not every set of things is the extension of
some adjective. This is a simple version of a kind of reasoning that will be very
important later on when we consider limits on what can be expressed in language
and what can be proved.

Another reason that Cantor’s Theorem is important is that it underlies a very useful
technique called “counting arguments.” We will return to this in more detail in
Chapter 4, but for now let’s look at a few examples of the basic idea. Intuitively,
Cantor’s Theorem can tell us when two sets are mismatched in a way that prevents
one set from “covering” or “representing” all of another.

1.5.4 Example (Undefinable Sets)
Let 𝑆 be a set of strings of symbols. Let 𝐿 be a set of descriptions, and suppose
that each description is a string. (That is, 𝐿 ⊆ 𝑆.) Suppose that for any pair of a
description 𝑑 ∈ 𝐿 and a string 𝑠 ∈ 𝑆, either 𝑑 is true of 𝑠 or else it is not. A set of
strings 𝑋 is definable iff there is some description 𝑑 ∈ 𝐿 such that 𝑑 is true of each
string 𝑠 ∈ 𝑋 and 𝑑 is not true of any string 𝑠 ∉ 𝑋. Otherwise, 𝑋 is undefinable.
Show that there exists at least one undefinable set of strings.

Proof
The basic idea is that if every set was definable, then there would be an onto function
from strings to sets of strings. Consider the function that takes each description
𝑑 ∈ 𝐿 to the set of strings that 𝑑 is true of. That is, for each description 𝑑 ∈ 𝐿, let

𝑓(𝑑) = {𝑠 ∈ 𝑆 ∣ 𝑑 is true of 𝑠}

Suppose for contradiction there are no undefinable sets of strings: that is, every set
of strings is definable. This means that 𝑓 ∶ 𝐿 → 𝑃 𝑆 is onto. But 𝐿 is a subset of 𝑆,
so 𝑃 𝐿 is a subset of 𝑃 𝑆. So Exercise 1.2.19 tells us that there is an onto function
from 𝐿 to 𝑃 𝐿. This contradicts Cantor’s Theorem. □

1.6. SIMPLIFICATIONS OF SET THEORY* 55

1.5.5 Exercise (Undecidable Sets)
Let 𝑆 be a set of strings. Let 𝑃 be a set of programs. Each program is a string
in 𝑆. (That is, 𝑃 ⊆ 𝑆.)

We can run a program with any given input string, and the program may or may
not succeed (for example, by eventually printing out the result True). So we
have a two-place relation program 𝐴 succeeds with input string 𝑠.
Say a set of strings 𝑋 is decidable iff there is some program 𝐴 that succeeds
for all and only the strings in 𝑋. If there is no program 𝐴 like this, then 𝑋 is
undecidable.

Show that there is at least one undecidable set of strings.

Hint. Consider the function that takes each program 𝐴 to the set of all strings 𝑠
that 𝐴 succeeds with.

1.5.6 Exercise (Kaplan’s Paradox)
Let 𝑃 be a set of propositions, and let 𝑊 be a set of possible worlds. We’ll
consider two relations between propositions and possible worlds. First, a propo-
sition can be true at a possible world. Second, a proposition 𝑝 can be the only
proposition that anyone believes at 𝑤; in this case we say that 𝑤 singles out 𝑝.
We’ll make two assumptions about these relations. First, for any set 𝑋 of pos-
sible worlds, there is some proposition 𝑝𝑋 which is true at each possible world
in 𝑋, and which is not true at any possible world which is not in 𝑋. Second, no
world singles out more than one proposition.

Given these assumptions, show that there is at least one proposition which is
not singled out by any possible world. In other words, some proposition cannot
possibly be uniquely believed.

Hint. Consider the function that takes each world 𝑤 that singles out some propo-
sition 𝑝 to the set of worlds at which 𝑝 is true.

1.6 Simplifications of Set Theory*

We have introduced many different principles about sets as “axioms”. But these
principles are not all independent of one another. In fact, we can prove some of
these principles from others. This allows us to reduce the number of assumptions
that our reasoning relies on.

56 CHAPTER 1. SETS AND FUNCTIONS

A closely related point is that we have treated several different kinds of objects as
“sui generis”: sets, ordered pairs, and functions were each introduced separately,
and each as a kind of thing to be understood on its own terms. But in fact, there are
ways of “constructing” some of these things from others. This allows us to simplify
our abstract ontology.

One tricky point is that there is more than one way to do this—and the different
ways of doing it provide us different pictures of our primitive ontology and basic
assumptions. So if we are taking seriously the question of which of these kinds of
objects (sets, or functions, or pairs) are fundamental, and which of these principles
about them are really fundamental axioms, then we have many different choices
available. It isn’t obvious how we would choose between them.

There is one choice of axioms which at least has the weight of historical tradition be-
hind it. This axiomatization is called “Zermelo-Fraenkel Set Theory with Choice”,
or ZFC, after two of its main discoverers (Ernst Zermelo and Abraham Fraenkel)
and one of its main distinctive axioms (the Axiom of Choice). I’ll briefly sketch
here how this goes and how it can be used to derive the other axioms I’ve mentioned
in this chapter. (For now, though, I’ll be setting aside the distinctive issues arising
for infinite sets. We’ll discuss this in the next chapter.) This way of presenting set
theory is so common that it is what many people mean by “set theory” or “standard
set theory”.3

ZFC uses only one primitive kind of object, which is a set, and the basic relation of
being an element of a set.

(One tricky point worth noticing is that ZFC is standardly written in a way that
presupposes that everything is a set. For instance, the standard way of writing the
Axiom of Exensionality says “For any 𝑥 and 𝑦, if 𝑥 and 𝑦 have exactly the same
elements, then 𝑥 = 𝑦.” But suppose that I am not a set, and so I have no elements.
Then this version of the Axiom of Extensionality implies that I am identical to
the empty set, since we both have exactly the same elements—none at all. The
same would go for you, or Jupiter, or anything else that has no elements. There
is a standard way of fixing this up, and it is called ZFCU, where the U stands for
“urelements”: things which are not sets, but are elements of sets.4 I won’t be fussy
about the distinction, and in this section I’ll keep calling this theory “ZFC”, even
though that isn’t quite historically accurate.)

3For a muchmore detailed introduction to standard set theory with lots of philosophical discussion
of its motivations, I recommend Potter (2004).

4I suppose the U probably really stands for the German word Urelemente, which means “primor-
dial elements,” from which the English word is borrowed.

1.6. SIMPLIFICATIONS OF SET THEORY* 57

ZFC has five axioms that we have already discussed, one we will discuss in the next
chapter (the Axiom of Infinity) and three additional axioms that we won’t need to
use in this course. Here are four of the five familiar axioms.

Empty Set Axiom. There is a set with no elements.
Axiom of Extensionality. For any sets 𝐴 and 𝐵, if every element of 𝐴 is an ele-

ment of 𝐵, and every element of 𝐵 is an element of 𝐴, then 𝐴 and 𝐵 are the
very same set.

Axiom of Power Sets. For any set 𝐴, there is a set of all subsets of 𝐴.
Axiom of Separation. For any set 𝐴, there is a set whose elements are just those

elements 𝑎 of 𝐴 such that 𝐹 (𝑎).

As we noted in Section 1.1, one way of understanding this more precisely is as an
axiom schema: 𝐹 (𝑎) can be replaced with any precise description of 𝑎. A different
way of doing it uses second-order quantification. It turns out that there are not just
important philosophical differences, but also important mathematical differences
between these two different approaches; see Chapter 10.

Here is the fifth familiar axiom:

Axiom of Choice. Let 𝐴 and 𝐵 be sets. Suppose that for each element 𝑎 ∈ 𝐴, there
is some element 𝑏 ∈ 𝐵 such that 𝐹 (𝑎, 𝑏). Then there is a function 𝑓 ∶ 𝐴 → 𝐵
such that, for each 𝑎 ∈ 𝐴, 𝐹 (𝑎, 𝑓𝑎).5

But there is something important to notice about the last one here, the Axiom of
Choice. This is an axiom about functions. But functions are not a basic concept
in ZFC. So in order to make sense of the Axiom of Choice, we have to say what
“function 𝑓 ∶ 𝐴 → 𝐵” means (as well as “𝑓𝑎”). The standard way to do this uses
the idea from Exercise 1.3.6: every function can be represented by a graph, which
is a functional set of ordered pairs. In ZFC, we simply define the word “function”
to mean “functional set of ordered pairs.” In other words, ZFC uses this definition:

1.6.1 Definition
A function from 𝐴 to 𝐵 is a set of ordered pairs 𝑓 ⊆ 𝐴×𝐵 such that for each 𝑎 ∈ 𝐴
there is exactly one 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝑓 . For 𝑎 ∈ 𝐴, we let 𝑓𝑎 stand for the
unique 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝑓 .

This pushes the problem back a bit. But note also that ordered pair is not a basic
concept in ZFC. So we also have to say what “𝐴 × 𝐵” and “(𝑎, 𝑏)” are supposed to

5I have also written the Axiom of Choice schematically: 𝐹 (𝑎, 𝑏) can be replaced by any precise
description of 𝑎 and 𝑏. But in fact in this case it is possible, and more standard, to rewrite the axiom
schema as a single axiom, by talking about sets of ordered pairs instead of relations.

58 CHAPTER 1. SETS AND FUNCTIONS

mean in this definition. The standard way to do this uses a clever trick. We can use
unordered sets to represent ordered pairs. Of course, we can’t just represent (𝑎, 𝑏)
with the set {𝑎, 𝑏}. If we did that, then (𝑎, 𝑏) and (𝑏, 𝑎) would be represented by the
very same set, which isn’t what we want. Here’s the trick: we can instead represent
the ordered pair (𝑎, 𝑏) with the set 𝑋 = {{𝑎}, {𝑎, 𝑏}}. The two elements of the
pair, 𝑎 and 𝑏, are guaranteed to play different “roles” within 𝑋 (unless 𝑎 = 𝑏). The
set 𝑋 has just one element 𝑌 that is itself a set with only one element; the unique
element of 𝑌 is the first element of the pair, 𝑎. If 𝑋 has an element 𝑍 which has
two elements, then just one element of 𝑍 is different from 𝑎, and this is the second
element of the pair, 𝑏. But 𝑋 might not have any element with two elements: in
this case, 𝑋 represents the pair (𝑎, 𝑎).

1.6.2 Definition
For any 𝑎 and 𝑏, let the ordered pair (𝑎, 𝑏) be the set {{𝑎}, {𝑎, 𝑏}}. If 𝑋 is an
ordered pair and 𝑎 and 𝑏 are objects, we call 𝑎 the first element of 𝑋 iff {𝑎} ∈ 𝑋,
and we call 𝑏 the second element of 𝑋 iff {𝑎, 𝑏} ∈ 𝑋, where 𝑎 is the first element
of 𝑋.

The reasoning above shows that each “ordered pair”, understood in this sneaky
way, does indeed have a unique “first element”, and a unique “second element”,
understood this way. In other wrods, for any ordered pairs (𝑎, 𝑏) and (𝑎′, 𝑏′), if
(𝑎, 𝑏) = (𝑎′, 𝑏′), then 𝑎 = 𝑎′ and 𝑏 = 𝑏′. We can also use other axioms to prove
that for any sets 𝐴 and 𝐵, there really is a set containing all ordered pairs (𝑎, 𝑏) such
that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

So we can define ordered pairs to be certain sets, and we can define functions to be
certain sets of ordered pairs. That lets us make sense of what the Axiom of Choice
means, even though it talks about functions, from a foundation of nothing but sets.
But we also had some other important axioms about ordered pairs and functions:
the Axiom of Pairs and the Axiom of Functions, which say that there exist certain
sets of ordered pairs and sets of functions. We could write these down directly as
axioms in ZFC now, but this isn’t how it’s usually done. Instead, they are each
theorems, which we can prove from different axioms.

These other axioms are ones that we don’t really need in this text, so I have not
discussed them. These guarantee that there are “wide enough” and “deep enough”
sets. First, you can take any set of sets {𝐴, 𝐵, 𝐶, …}, and put all of the elements
of 𝐴 together with all of the elements of 𝐵 and all of the elements of 𝐶 , and so on,
and stick them together into a single set. This is the union of the sets 𝐴, 𝐵, 𝐶 , ….

Axiom of Union. For any set 𝑋, there is a set that we call ⋃ 𝑋 (the union of 𝑋),

1.6. SIMPLIFICATIONS OF SET THEORY* 59

such that, for any 𝑎, 𝑎 ∈ ⋃ 𝑋 iff there is some 𝐴 ∈ 𝑋 such that 𝑎 ∈ 𝐴.

Second, if you have a set, you can replace all of its elements one by one with other
things and get another set.

Axiom of Replacement. Let 𝐴 be a set, and suppose that for each element 𝑎 ∈ 𝐴,
there is exactly one 𝑏 such that 𝐹 (𝑎, 𝑏). Then there is a set 𝐵 such that, for
any 𝑏, 𝑏 ∈ 𝐵 iff for some 𝑎 ∈ 𝐴, 𝐹 (𝑎, 𝑏).

(Like Separation and Choice, Replacement can also be understood either as an ax-
iom schema or else as a second-order axiom.)

Using the tricky definitions of pairs and functions, we don’t have to take the Axiom
of Pairs, the Axiom of Functions, or Function Extensionality as extra axioms. We
can prove these facts as theorems.

1.6.3 Example
The axioms listed above imply the Axiom of Pairs: for any sets 𝐴 and 𝐵, there is a
set 𝐴 × 𝐵 containing all of the ordered pairs of elements of 𝐴 and 𝐵.

Proof
First, we can show that there is a set {𝐴, 𝐵}. (We haven’t even shown this yet!) We
can show this using Replacement. We do know that there is a set with two elements,
namely the power set of the empty set, which is {∅, {∅}}. Call this 𝟚. For each
element 𝑎 ∈ 𝟚, there is exactly one 𝑏 with this property: either 𝑎 = ∅ and 𝑏 = 𝐴,
or else 𝑎 = {∅} and 𝑏 = 𝐵. So the Axiom of Replacement implies that there is a
set containing just 𝐴 and 𝐵.

Second, there is a union of 𝐴 and 𝐵, applying the Axiom of Union to {𝐴, 𝐵}. That
is, there is a set 𝐴 ∪ 𝐵 such that 𝑥 ∈ 𝐴 ∪ 𝐵 iff 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵.

Third, notice that any ordered pair of an element of 𝐴 and an element of 𝐵 is by
definition a set of the form {{𝑎}, {𝑎, 𝑏}} for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Each element of this
set is a subset of 𝐴 ∪ 𝐵. So each ordered pair is a subset of the power set of 𝐴 ∪ 𝐵.
Using the Axiom of Power Sets and the Axiom of Separation, there is a set

𝐴 × 𝐵 = {𝑥 ∈ 𝑃 (𝐴 ∪ 𝐵) ∣ 𝑥 is an ordered pair of some 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

Every ordered pair of an element of 𝐴 and an element of 𝐵 is in 𝐴 × 𝐵. □

1.6.4 Exercise
Use the axioms and definitions in this section to prove the Axiom of Functions

60 CHAPTER 1. SETS AND FUNCTIONS

and the Axiom of Function Extensionality.

There is something nice and economical about the approach of ZFC. By using the
right definitions, we have cut down how many undefined primitive concepts we are
taking for granted—instead of sets and functions and ordered pairs, we just have
sets. And we have also cut down on how many unproved basic assumptions we are
taking for granted.

But this approach also raises some hard philosophical questions. Is this really what
a function is—a set of ordered pairs? If so, why think that a function 𝑓 ∶ 𝐴 → 𝐵 is
a subset of 𝐴 × 𝐵, rather than a subset of 𝐵 × 𝐴? And similarly, is an ordered pair
really just a set? If so, why think it’s the set we described above, rather than some
other set that could do the same job? These definitions look arbitrary.6

These are philosophically important questions: we’d like to understand the nature
of abstract objects, what things like functions and ordered pairs really are. But they
aren’t technically important questions. For the purposes of proving the theorems
that come later, all we really care about is whether there is something or other that
plays the role of functions, and something or other that plays the role of pairs. What
we care about is whether there is some way of understanding “function” (and “𝑓𝑎”)
such that principles like Function Extensionality, the Axiom of Functions, and the
Axiom of Choice come out true. The ZFC definitions are good enough for this. It
doesn’t really matter for the theorems if there ismore than oneway of understanding
these principles that makes them come out true.

This kind of issue will come up over and over. What are numbers really? What
are sequences, or strings, or sentences, or programs, or proofs? It’s not clear how
to answer these questions. But very often, for our purposes it’s enough to find
something or other that has the right structural features to play the role of numbers,
sequences, strings, and so on.

I have left out two other standard axioms of ZFC. One of them is somethingwe don’t
need in this text, but I should mention it for completeness. This axiom says that sets
have a nice hierarchical structure: if you take elements of elements of elements …
you always eventually reach a bottom level of things without any more elements
(which are either the empty set or urelements). It is a bit tricky to figure out how
to state this precisely without appealing to finite numbers, which is something we
haven’t discussed yet. But there turns out to be a nice elegant way of capturing this
idea (given the other axioms).

Axiom of Foundation. For any non-empty set 𝐴, there is some element 𝑎 ∈ 𝐴
6Benacerraf (1965) develops this idea to argue against the standard ZFC definitions.

1.7. REVIEW 61

such that 𝑎 and 𝐴 have no elements in common.

The final axiom of ZFC is something we definitely will need in this class, and we
will discuss it in detail in Chapter 2: the Axiom of Infinity.

1.7 Review

Key Techniques

• You can show that 𝐴 and 𝐵 are the same set in two steps:

1. Show that every element of 𝐴 is an element of 𝐵.
2. Show that every element of 𝐵 is an element of 𝐴.

• You can show that 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐵 are the same function by
showing that 𝑓𝑎 = 𝑔𝑎 for every element 𝑎 ∈ 𝐴.

• You can come up with a subset of a set 𝐴 by precisely stating a property of
elements of 𝐴. By Separation, there is a subset 𝐵 ⊆ 𝐴 whose elements are
all and only the elements of 𝐴 that have that property.

• You can come up with a function from 𝐴 to 𝐵 by precisely describing a
relation between elements of 𝐴 and elements of 𝐵 such that each element of
𝐴 stands in that relation to at least one element of 𝐵.

• Cantor’s Theorem (Exercise 1.5.3) is proved using the self-application trick
(which is also called diagonalization). If there was an onto function 𝑓 ∶
𝑃 𝐴 → 𝐴, then you could use this to “apply” sets to themselves (by checking
whether 𝑓(𝑋) ∈ 𝑋). But then if you consider the set of all sets that do not
“apply” to themselves in this sense, you can derive a contradiction.

Key Concepts and Facts

• If 𝐴 and 𝐵 are sets, 𝐴 is a subset of 𝐵 (𝐴 ⊆ 𝐵) iff every element of 𝐴 is an
element of 𝐵.

• If 𝑓 is a function from a set 𝐴 to a set 𝐵 (written 𝑓 ∶ 𝐴 → 𝐵) then 𝑓 maps
each element 𝑎 in 𝐴 to some element 𝑓𝑎 in 𝐵.

• An ordered pair is something with a first element and a second element.
For each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, there is exactly one ordered pair in the set of
ordered pairs 𝐴 × 𝐵 whose first element is 𝑎 and whose second element is 𝑏.
This ordered pair is labeled (𝑎, 𝑏).

62 CHAPTER 1. SETS AND FUNCTIONS

• A function 𝑓 ∶ 𝐴 → 𝐵 is one-to-one iff 𝑓 maps at most one element of 𝐴 to
each element of 𝐵.

• A function 𝑓 ∶ 𝐴 → 𝐵 is onto iff 𝑓 maps at least one element of 𝐴 to each
element of 𝐵.

• A function is a one-to-one correspondence iff it is both one-to-one and onto.

• The power set of 𝐴 (called 𝑃 𝐴 for short) is the set of all subsets of 𝐴.

• The function set 𝐵𝐴 is the set of all functions from 𝐴 to 𝐵.

• For any set𝐴, there is a one-to-one correspondence between𝑃 𝐴 and 𝟚𝐴. That
is, we can put subsets of 𝐴 in one-to-one correspondence with True-or-False
“test functions” on 𝐴.

• Russell’s Paradox. Some things don’t form a set at all. In particular, there
is no “universal set” containing every set.

• Cantor’s Theorem. There is no onto funtion from a set 𝐴 to its set of subsets
𝑃 𝐴.

Chapter 2

The Infinite

In this chapter we’ll explore some important infinite sets—especially the set of num-
bers and the set of strings. Infinite set have some striking and counterintuitive prop-
erties. This can be delightful, if you have the taste for it, but you might worry that
they are too far removed from practical experience to be important, and you might
suspect that lessons we draw from infinity for our ordinary language and reasoning
are insecure. Many philosophers andmathematicians have shared these worries and
suspicions. But the infinite is very close to home.

We speak a language with finitely many words, and each sentence combines just
finitely many of them. But it is possible to combine these words in ways no one
else ever has in all of human history—and this will always be possible. Here’s a
simple example:
I like logic.
I know someone who likes logic.
I know someone who knows someone who likes logic.
I know someone who knows someone who knows someone who likes logic.

We can go on this way indefinitely. It’s not as if there is some finite stopping point,
beyond which one one would lapse into unintelligibility. So there are infinitely
many such sentences. Each sentence in English is a finite thing. But all the English
sentences taken together form an infinite set. It’s plausible that we’ll only ever get
around to writing down some small finite subset of this vast variety, since it’s plau-
sible that humanity (or at least written English) will only exist for a finite amount
of time. But to understand the structure of our language and thought in general, as
a whole, we will need to confront the infinite.

63

64 CHAPTER 2. THE INFINITE

Infinity shows up everywhere in logic. Our standard logical languages are like
English: though each sentence is made up of finitely many symbols, there are in-
finitely many different sentences that allow us to express infinitely many different
ideas. There are likewise infinitely many different formal proofs, infinitely many
different counterexamples to invalid arguments, infinitely many different system-
atic procedures for answering questions, and so on.

In this chapter wewill get acquaintedwith some basic tools for workingwith infinity,
which we will use over and over again in the following chapters.

2.1 Numbers and Induction

Now it is the same thing to say this once and to keep
saying it forever.

Zeno (c. 490 – c. 430 BCE) as reported by Simplicius
(c. 490 – c. 560 CE), On Aristotle’s Physics

We begin with the simplest and most familiar infinite set.

The natural numbers are the finite counting numbers, starting from zero: 0, 1, 2, …
and so on. (In this text, by “number” I will always mean “natural number.”) We’ll
use the symbol ℕ as a label for the set of all natural numbers. Let’s start with some
basic observations.

The numbers have a starting place: zero. (Starting from zero instead of one turns
out to be convenient in lots of ways. But it does introduce some potential confusion,
since this means the first number is zero, the second is one, the third is two, and so
on. This can be a source of “off-by-one bugs,” so be careful.)

Every number is immediately followed by another bigger number. This is called its
successor. The successor of 𝑛 is 𝑛 + 1. But as it turns out, the notion of a successor
is conceptually more basic than the notion of addition, so it will be helpful to give it
its own special notation: we’ll write suc 𝑛 for the successor of the number 𝑛. (Some
people use the notation 𝑛′ or 𝑆𝑛 instead.) In fact, the notion of successor is even
conceptually more basic than the notion of one. We can define one as the successor
of zero. (So defining suc 𝑛 as 𝑛 + 1 would be circular.)

For every number 𝑛, suc 𝑛 is a number. This means we have a function suc ∶ ℕ → ℕ.
This is called the successor function.

2.1.1 Definition
The number one is the successor of zero, two is the successor of one; three is the

2.1. NUMBERS AND INDUCTION 65

successor of two; and so on.

1 = suc 0
2 = suc 1 = suc suc 0
3 = suc 2 = suc suc suc 0

⋮

By taking successors over and over again, we eventually reach every number. We
also never double back on the same numbers over again: taking successors gives us
a new, bigger number every time. Every number can be reached in just one way by
starting from zero and taking successors. This means that if we keep going from
one number to the next, we are never going to end up at a number we’ve already
seen before. The successor function doesn’t have any “loops”—it just goes on and
on to ever-bigger numbers. You can’t ever take a successor-step and end up back
at zero. You also can’t ever take a successor-step and end up at a number which
was already a successor of some earlier number. We can sum up this “no looping”
condition as follows:

2.1.2 Injective Property
(a) Zero is not a successor of any number;
(b) No two numbers have the same successor.

We can put this another way using the terminology of functions:

(a) Zero is not in the range of the successor function;
(b) The successor function is one-to-one.

Here is a concise way of representing the structure of numbers: they are generated
by the following two rules.

0 is a number
𝑛 is a number

suc 𝑛 is a number

Here’s how to read this notation. Each rule says: if we have everything above the
line, then we can also get the conclusion below the line. The zero rule has nothing
above the line, because we can conclude that zero is a number without relying on
any further assumptions. The successor rule says that, for any 𝑛, if 𝑛 is a number,
then suc 𝑛 is also a number. Every number can be reached in exactly one way by
repeatedly applying these rules. (In the case of numbers, this notation doesn’t really
make things any clearer than what we’ve already said. But when we consider more

66 CHAPTER 2. THE INFINITE

complicated structures later on, this notation for “formation rules” will become
more useful.)

Every number can eventually be reached by startingwith zero, and repeatedly taking
successors. This is the basic idea behind a fundamental technique—one of the basic
tools we will use over and over again—which is called proof by induction. Let’s
start with an example.

(Note that this mathematical use of the word “induction” is different from the tra-
ditional philosophical meaning of “induction”, which is a way of gaining empirical
knowledge by generalizing from past observations. The kind of induction we’re
talking about here—“mathematical induction”—is really a kind of deduction.)

2.1.3 Example
No number is its own successor. That is, there is no number 𝑛 such that suc 𝑛 = 𝑛.

What we want to show is that every number 𝑛 has a certain property: namely, the
property that suc 𝑛 ≠ 𝑛. Let’s call a number nice iff it has this property: that is,
a nice number is a number which is not its own successor. We want to show that
every number is nice.

How can we prove this? It would be nice if we could do it in steps, by proving each
of the following things:

0 is nice
1 is nice
2 is nice
⋮

The trouble is that this would require a proof with infinitely many steps, which we
have no hope of finishing before the semester ends. But let’s go ahead and try.

For the first step, we show that zero is nice: that is, suc 0 ≠ 0. This is guaranteed
by the Injective Property, which says that zero is not the successor of any number—
including zero itself.

Next we show that one is nice: that is, suc 1 ≠ 1. Remember that one is defined to
be the successor of zero: so what we want to show is that suc(suc 0) ≠ suc 0. We
just proved that suc 0 ≠ 0, so this follows from the fact that suc is one-to-one: suc 0
and 0 are different numbers, so their successors are also different.

Next we show that two is nice: that is, suc 2 ≠ 2. Two is defined to be the successor
of one, so what we want to show is that suc(suc 1) ≠ suc 1. We just proved that

2.1. NUMBERS AND INDUCTION 67

suc 1 ≠ 1, so again this follows from the fact that suc is one-to-one.

But nowwe notice a pattern: the proof that two is nice worked exactly the same way
as the proof that one is nice. And we could keep going in the same way: the fact
suc 2 ≠ 2 also implies that suc 3 ≠ 3, and this then implies that suc 4 ≠ 4, and so
on. In other words, it looks like we can use the same pattern of reasoning to show
each of the following things:

if 0 is nice then suc 0 is nice
if 1 is nice then suc 1 is nice
if 2 is nice then suc 2 is nice
⋮

Furthermore, we can prove each of these things in the very same way. So what we
can do is write down a general argument that covers all of these cases at once. That
is, instead of proving these conditionals one by one, we can prove the following
general fact:

For every number 𝑛, if 𝑛 is nice, then suc 𝑛 is nice.

Here is the proof. Let 𝑛 be a number, and suppose that 𝑛 is nice: that is, suc 𝑛 ≠ 𝑛.
We want to show that suc 𝑛 is nice. That is, we want to show:

suc(suc 𝑛) ≠ suc 𝑛

The Injective Property says that the successor function is one-to-one. So our as-
sumption that suc 𝑛 and 𝑛 are different numbers implies that they also have different
successors. This is exactly what we wanted to show: suc 𝑛 is nice.

To sum up, we showed two things.

1. 0 is nice.
2. For every number 𝑛, if 𝑛 is nice, then suc 𝑛 is nice.

Together, these two steps guarantee that every number is nice. Why does this fol-
low? Well, in the first step, we showed that zero is nice.

0 is nice

Then the second step tells us in particular:

If 0 is nice, then 1 is nice

Thus
1 is nice

68 CHAPTER 2. THE INFINITE

The second step also tells us:

If 1 is nice, then 2 is nice

Thus
2 is nice

And the second step also tells us:

If 2 is nice, then 3 is nice.

Thus
3 is nice

And obviously we can keep going, using the same two steps to show that 4 is nice,
and 5 is nice, and so on. By taking successors over and over, eventually we reach
every number. So by applying our second step, “if 𝑛 is nice, then suc 𝑛 is nice”,
over and over again to larger and larger numbers 𝑛, eventually we can show that any
given number is nice. So every number is nice.

That is the key idea of proof by induction. In order to prove infinitely many things,
it is enough to prove just two things. The first thing is called the base case: 0 is
nice. The second thing is called the inductive step: every nice number is followed
by another nice number.

Now that we’ve figured it out, let’s write out the proof in a more concise, official
way, which shows the standard structure of a proof by induction.

Proof
Call a number 𝑛 nice iff suc 𝑛 ≠ 𝑛. We will prove by induction that every number
is nice.

Base case. By the Injective Property, 0 is not a successor, so suc 0 ≠ 0. That is, 0
is nice.

Inductive Step. We will show that for any number 𝑛, if 𝑛 is nice then suc 𝑛 is nice.
Let 𝑛 be any number, and suppose 𝑛 is nice: that is, suc 𝑛 ≠ 𝑛. By the Injective
Property, the successor function is one-to-one, so this implies suc(suc 𝑛) ≠ suc 𝑛.
This means that suc 𝑛 nice. □

Let’s do another example.

2.1.4 Example
Every number is either zero or a successor. That is, for any number 𝑛, either 𝑛 = 0
or else there is some number 𝑚 such that 𝑛 = suc𝑚.

2.1. NUMBERS AND INDUCTION 69

Proof
We’ll prove this by induction as well. We want to show that every number 𝑛 has a
certain property: the property of either being zero, or else being the successor of
some number. For short, let’s say a number 𝑛 is good iff either 𝑛 = 0 or else there is
some number 𝑚 such that 𝑛 = suc𝑚. We want to show that every number is good.
Again, we can do this in two steps.

For the base case, we’ll show that zero is good. That is, either 0 = 0 or else 0 is a
successor. Obviously the first case is true.

For the inductive step, we’ll show that goodness is inherited by successors: for any
number 𝑛, if 𝑛 is good, then the successor of 𝑛 is also good. That is, we assume that
𝑛 is either zero or a successor, and we want to show that suc 𝑛 is either zero or a
successor. Again, this is obvious, because obviously suc 𝑛 is the successor of some
number (namely 𝑛). □

Like before, the two parts of this proof together guarantee that every number is
good. The base case tells us that zero is good. The inductive step tells us that, if
zero is good, so is one. The inductive step also tells us that if one is good, so is two.
And it tells us that if two is good, so is three. And going on this way, eventually we
can reach any number, and show that it is good. So every number is good.

2.1.5 Technique (Proof by Induction)
We use proof by induction when we are trying to show that every number has a cer-
tain property. To do a proof by induction, start by clearly identifying the property.

We want to show that for every number 𝑛, _______________.

Fill in the blank with some statement about 𝑛.

Once you’ve identified the key property, a proof by induction has two parts. The
first step is to show that zero has the property. This step is called the base case. It
is usually the easiest part of the proof. (But not always!)

The second step is to prove a certain universal conditional statement. You want to
show, for every number 𝑛, if 𝑛 has the property, then the successor of 𝑛 also has the
property. This is called the inductive step. Usually the inductive step will begin
like this, where you fill in the blanks with the property you are trying to prove every
number has:

For the inductive step, let 𝑛 be any number, and suppose that
𝑛 is _______________. We want to show that suc 𝑛 is also
_______________.

70 CHAPTER 2. THE INFINITE

Once you’ve done both steps, you’re done. For in fact, every number is either zero,
or else the successor of zero, or the successor of the successor of zero, or …. So by
chaining together the conditional you proved in the inductive step some number of
times, eventually you prove that every number has the property you wanted.

Until you get used to proof by induction, it can feel a little magical. In particular, the
inductive step might seem like cheating. You are assuming that something has the
property that you are trying to prove everything has. But this is okay! Of course it
would be useless to prove “for any 𝑛, if 𝑛 is nice, then 𝑛 is nice”. That would amount
to a pointlessly circular argument. But that’s not what you do in a proof by induction:
instead, you prove “for any 𝑛, if 𝑛 is nice, then 𝑛’s successor is nice”. Proving this
makes a real advance—an advance of exactly one step. The key insight involved
in proof by induction is that the journey to any finite number at all is nothing more
than many journeys of a single step, one after another.

We’ll have lots more examples and opportunities for practice as we go. But first
we’ll need to introduce another concept, in the next section.

In fact, the validity of proof by induction is often taken to be part of the definition of
the natural numbers.1 The intuitive idea of the natural numbers is that every number
can be reached by starting with zero and taking successors some finite number of
times. This would obviously be circular as a definition of “finite number”. But
we can make this idea precise and non-circular using the idea of induction. The
key idea of proof by induction is that, for any property, if zero has it, and it is
always inherited by successors, then every number has the property. There aren’t
any infinite natural numbers which are never reached by the process of repeatedly
taking successors.

So this is another way of putting the important fact about the natural numbers. Like
the Axiom of Separation and the Axiom of Choice from Chapter 1, we can state
this as a generalization about all properties.

2.1.6 Inductive Property of Numbers
Let 𝐹 be any property. Suppose that

(a) 0 is 𝐹
(b) For each number 𝑛, if 𝑛 is 𝐹 , then the successor of 𝑛 is 𝐹 also.

Then every number is 𝐹 .

1TODO. Historical note: Dedekind, Peano, Frege

2.1. NUMBERS AND INDUCTION 71

What this says is just that proof by induction works. Part (a) says that the base case
holds for the property of being 𝐹 , and part (b) is the inductive step. The Inductive
Property says that if (a) and (b) both hold, then (“by induction”) every number has
the property.

If we want to avoid talking about properties here, we can say the same thing in terms
of sets instead.

2.1.7 Inductive Property of Numbers (Set Version)
Let 𝑋 be any set. Suppose that

(a) 0 is in 𝑋
(b) For each number 𝑛 in 𝑋, the successor of 𝑛 is also in 𝑋.

Then every number is in 𝑋.

This says, in particular, induction works for the property of being an element of the
set 𝑋. (The two versions of the axiom are equivalent because being in the set of
numbers that are 𝐹 is equivalent to being a number which is 𝐹 .) Part (a) says that
the base case holds for the property of being an element of 𝑋; part (b) says that the
inductive step also holds for this property. The Inductive Property says that if (a)
and (b) both hold, then (“by induction”) every number has this property.

We can put these ideas together to say exactly what we are assuming about what the
natural numbers are like. These assumptions are called the Peano Axioms.2

2.1.8 Axiom of Numbers
There is a set ℕ, the set of all (natural) numbers. There is an element of ℕ called
zero, and a successor function suc ∶ ℕ → ℕ. These have the following two prop-
erties.

(a) Injective Property.

(i) Zero is not in the range of the successor function. That is, zero is not a
successor of any number.

(ii) The successor function is one-to-one. That is, no two numbers have the
same successor.

2There is really more than one collection of assumptions that is sometimes called “the Peano
Axioms”. An important thing about this way of putting the axioms is that they talk about properties
or sets. In Section 5.4 we’ll encounter some other principles that are also called “the Peano Axioms,”
but which don’t say anything about sets. There are some important differences between the different
versions, which are discussed in Chapter 9.

72 CHAPTER 2. THE INFINITE

(b) Inductive Property. Let 𝑋 be any set. Suppose

(i) 0 ∈ 𝑋;
(ii) For each 𝑛 ∈ 𝑋, the successor of 𝑛 is also in 𝑋.

Then 𝑋 contains every number.

2.1.9 Exercise
In this exercise we’ll explore the way that the Injective Property and Inductive
Property each help pin down the structure of the numbers. Let 𝐴 be a set, let 𝑧
be an element of 𝐴, and let 𝑠 be a function from 𝐴 to 𝐴. We’ll say 𝐴, 𝑧, and
𝑠 have the Injective Property iff 𝑧 is not in the range of 𝑠, and 𝑠 is one-to-one.
We’ll say 𝐴, 𝑧, and 𝑠 have the Inductive Property iff, for any set 𝑋, if (a) 𝑧 ∈ 𝑋
and (b) for every element 𝑎 ∈ 𝐴 which is in 𝑋, 𝑠𝑎 is also in 𝑋, then 𝑋 includes
every element of 𝐴.

(a) Give an example of 𝐴, 𝑧, and 𝑠 that have neither the Inductive Property
nor the Injective Property.

(b) Give an example of 𝐴, 𝑧, and 𝑠 that have the Inductive Property, but not
the Injective Property.

(c) Give an example of 𝐴, 𝑧, and 𝑠 that have the Injective Property, but not
the Inductive Property.

2.2 Recursive Definitions

‘Can you do Addition?’ the White Queen asked.
‘What’s one and one and one and one and one and one
and one and one and one and one?’
‘I don’t know,’ said Alice. ‘I lost count.’
‘She can’t do Addition,’ the Red Queen interrupted.

Lewis Carroll, Through the Looking Glass (1871)

Another fundamental technique we’ll use when working with infinite sets such as
numbers and strings is recursive definition. This is very closely related to inductive
proof. A recursive definition is a way of defining an infinite set or relation, or a
function with an infinite domain.

There are many different kinds of recursive definitions. We’ll start with an example
of a recursively defined property.

2.2. RECURSIVE DEFINITIONS 73

2.2.1 Definition
We can define even number recursively, using the following rules.

0 is even
𝑛 is even

suc suc 𝑛 is even

Intuitively, what this definition means is that a number is even if and only if we
eventually reach that number by applying these two rules finitely many times. The
set of even numbers include

0
suc suc 0
suc suc suc suc 0
suc suc suc suc suc suc 0
⋮

and so on. Or in more familiar notation: 0, 2, 4, 6, …
The recursive definition of even tells us that we can use certain kinds of reasoning in
our proofs. First, we can use the rules that we wrote down as part of the definition.
At any point in our proofs, for any number 𝑛, we can write down “𝑛 is even,” and
justify this step “by Definition 2.2.1.” And similarly, at any point in our proofs
where we have already shown “𝑛 is even” we can then also infer “suc suc 𝑛 is even”
as well, with the justification “by Definition 2.2.1.” For example, we know this:

2.2.2 Example
4 is even.

Let’s spell this out very explicitly.

Proof
By the first part of Definition 2.2.1, 0 is even. By the second part of Definition 2.2.1,
it follows that suc suc 0 is even. By the second part of Definition 2.2.1 again, it then
follows that suc suc suc suc 0 is even, and this is equal to 4 by definition. □

Here is another example. Instead of defining a property like evenness, we can re-
cursively define a relation.

2.2.3 Definition
The relation 𝑚 is less than or equal to 𝑛, abbreviated 𝑚 ≤ 𝑛, is defined recursively
by the following rules (for any numbers 𝑚 and 𝑛):

74 CHAPTER 2. THE INFINITE

𝑛 ≤ 𝑛
𝑚 ≤ 𝑛

𝑚 ≤ suc 𝑛

Again, intuitively what this definition means is that for any numbers 𝑚 and 𝑛, we
have 𝑚 ≤ 𝑛 if and only if, by repeatedly applying these two rules finitelymany times,
we can eventually reach the concluion that 𝑚 ≤ 𝑛. So, for example, the definition
tells us:

0 ≤ 0
0 ≤ suc 0 = 1
0 ≤ suc 1 = 2
⋮

Similarly:
3 ≤ 3
3 ≤ suc 3 = 4
3 ≤ suc 4 = 5
⋮

And so on, for infinitely many different pairs of numbers.

As with the recursive definition of even, this recursive definition of less than or
equal lets us use certain kinds of reasoning in our proofs. At any point in our proofs,
for any number 𝑛, we can write down 𝑛 ≤ 𝑛. And at any point in our proofs where
we have already shown 𝑚 ≤ 𝑛, we can infer 𝑚 ≤ 𝑛 + 1. For example, we know this:

2.2.4 Example
For each number 𝑛, 𝑛 ≤ 𝑛. (That is, the less than or equal relation is reflexive.)

Proof
By the first rule in Definition 2.2.3. □

2.2.5 Example
For each number 𝑛, 𝑛 ≤ suc suc 𝑛.

Proof
Let 𝑛 be any number. By Definition 2.2.3, we have

𝑛 ≤ 𝑛
so 𝑛 ≤ suc 𝑛
so 𝑛 ≤ suc suc 𝑛 □

2.2. RECURSIVE DEFINITIONS 75

But recursive definitions also give us something more interesting: a new kind of
proof by induction. Again, let’s start with an example.

2.2.6 Example
For any numbers 𝑚 and 𝑛 such that 𝑚 ≤ 𝑛, either 𝑚 = 𝑛 or suc𝑚 ≤ 𝑛.

Proof
Say that a pair of numbers (𝑚, 𝑛) is nice iff

either 𝑚 = 𝑛 or 𝑚 + 1 ≤ 𝑛.

We are trying to show that every pair of numbers (𝑚, 𝑛) such that 𝑚 ≤ 𝑛 is nice. We
can prove this by induction on the recursive definition of ≤, Definition 2.2.3. Like
inductive proofs on numbers, this inductive proof has two parts, one for each part
of the recursive definition.

1. The first rule in the definition of ≤ says that each pair (𝑛, 𝑛) is a ≤-pair. So
the first part of our inductive proof is to show that for each number 𝑛, the pair
(𝑛, 𝑛) is nice.

This is clear, because 𝑛 = 𝑛, which satisfies the first disjunct of the “either … or
…” statement.

1. The second rule in the definition of ≤ says that, for any pair of numbers (𝑚, 𝑛),
if 𝑚 ≤ 𝑛, then 𝑚 ≤ suc 𝑛. Accordingly, the second part of our inductive proof
is to show that for any numbers 𝑚 and 𝑛, if (𝑚, 𝑛) is nice, then (𝑚, suc 𝑛) is
also nice.

To show this, we suppose:

either 𝑚 = 𝑛 or suc𝑚 ≤ 𝑛

We will then show:

either 𝑚 = suc 𝑛 or suc𝑚 ≤ suc 𝑛

There are two cases.

First, suppose 𝑚 = 𝑛. Then suc𝑚 = suc 𝑛, and so suc𝑚 ≤ suc 𝑛 by the first rule in
Definition 2.2.3.

Second, suppose suc𝑚 ≤ 𝑛. Then suc𝑚 ≤ suc 𝑛 by the second rule in Defini-
tion 2.2.3.

In either case, the pair (𝑚, suc 𝑛) is nice. This completes the inductive proof. □

76 CHAPTER 2. THE INFINITE

In this proof, we tried to show that whenever 𝑚 ≤ 𝑛, the pair (𝑚, 𝑛) is nice. We
did this by showing that each of the rules in the recursive definition of ≤ preserve
niceness. Again, intuitively, whenever 𝑚 ≤ 𝑛, we can reach the conclusion that
(𝑚, 𝑛) is nice by chaining together the two parts of this proof some finite number of
times.

2.2.7 Exercise
Prove by induction that for all numbers 𝑚, 𝑛, 𝑘, if 𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑘, then 𝑚 ≤ 𝑘.
(That is, the less than or equal relation is transitive.)

Hint. This is a bit tricky, because there are several different ways of restating this
claim in order to prove it by induction. The proof goes most straightforwardly if
you structure it like this: let 𝑚 be any number, and then show by induction on ≤
that every pair of numbers (𝑛, 𝑘) such that 𝑛 ≤ 𝑘 has this property:

If 𝑚 ≤ 𝑛, then 𝑚 ≤ 𝑘.

Like other kinds of induction and recursion, recursively defined properties and re-
lations can seem like magic. How is it that saying “by definition” lets us just start
pulling statements like “5 ≤ 5” or “if 𝑛 is even then 𝑛 + 2 is even” out of the air?

The set of even numbers 𝐸 is supposed to have certain properties. First, it’s sup-
posed to have certain closure properties, given by the rules we wrote down.

• (i) 0 ∈ 𝐸
(ii) For each number 𝑛 ∈ 𝐸, also suc suc 𝑛 ∈ 𝐸.

For short, let’s say that any set with these two properties is E-closed.

That isn’t enough, though. For example, the set of all numbers is also E-closed. So
is the set of all numbers except 1 and 3. (Check this!)

Besides the closure properties, the set of even numbers is supposed to have a certain
inductive property. Like the inductive property of numbers, the inductive property
of even numbers tells us that proofs by induction on the definition of even really
works. That is, abstractly:

For any property 𝐹 , if

(i) 0 is 𝐹 , and
(ii) for every number 𝑛, if 𝑛 is 𝐹 then suc suc 𝑛 is also 𝐹 , then every

even number is 𝐹 .

Alternatively, we can write down that inductive property in terms of sets:

2.2. RECURSIVE DEFINITIONS 77

Let 𝑋 be any set of numbers. If

(i) 0 ∈ 𝑋, and
(ii) for each number 𝑛 ∈ 𝑋, also suc suc 𝑛 ∈ 𝑋,

then every even number is in 𝑋.

Using our definition of “E-closed”, and letting 𝐸 be the set of even numbers, we
can restate the inductive property even more concisely:

For any set 𝑋, if 𝑋 is E-closed, then 𝐸 ⊆ 𝑋.

So the set of even numbers is supposed to have both the closure property and the
inductive property. We can put those two properties together in the following pithy
characterization of the set of even numbers:

𝐸 is the smallest E-closed set.

Here is another way of saying this:

2.2.8 Exercise
For any number 𝑛, 𝑛 is even iff 𝑛 is an element of every E-closed set.

Hint. For the left-to-right direction, use induction on the recursive definition of
even.

This gives us an alternative way to define the set of even numbers—not recursively,
but explicitly—in a way that guarantees that this set has the properties that were
encoded in the recursive definition. We can say:

A number 𝑛 is even iff 𝑛 is an element of every E-closed set.

And then we can straightforwardly check that this alternative definition of “even”
guarantees that the even numbers have the properties we wanted for the recursive
definition: the set of even numbers is closed, and it has the right inductive property.
(Check this!)

In short, it is possible to eliminate the recursive definition of even, and replace it
with an explicit definition. But since we know we can do this, now we don’t have
to! We know that if we write down the recursive definition of even, then there
really is a set that has the properties that the definition requires, for which all of the
appropriate proof rules really work.

We can do the same thing for the recursive definition of less than or equal, ≤. This
time, for a set 𝑋 of ordered pairs of numbers, let’s say that 𝑋 is ≤-closed iff

78 CHAPTER 2. THE INFINITE

(i) For any number 𝑛, (𝑛, 𝑛) ∈ 𝑋, and
(ii) For any pair of numbers (𝑚, 𝑛), if (𝑚, 𝑛) ∈ 𝑋, then (𝑚, suc 𝑛) ∈ 𝑋 as well.

Then we can replace the recursive definition of ≤ with this explicit definition:

For any numbers 𝑚 and 𝑛, 𝑚 ≤ 𝑛 iff (𝑚, 𝑛) is an element of every
≤-closed set.

Again, we can check that this guarantees that all of the proof rules corresponding
to the recursive definition of ≤ really work.

All of this is done more carefully and generally in Section 2.3.

2.2.9 Technique (Recursively defining a property or relation)
We can recursively define a property 𝐹 by writing down certain “derivation rules,”
like this:

𝑥1 is 𝐹 … 𝑥𝑛 is 𝐹
is 𝐹

where the blank is filled in with some description of another thing, which can de-
pend on 𝑥1, …, 𝑥𝑛. Note that we can have 𝑛 = 0, in which case there is nothing
written above the line.

Once we have written down this definition, we can use any of these rules we wrote
down anywhere we want in our proofs.

We can also use the following kind of proof by induction. Suppose that we want
to prove that every 𝐹 is nice. (Here nice is a placeholder for some other property.)
We can do this by doing one step for each rule in our definition. Each step looks
like this:

Suppose that 𝑥1 is nice, …, and 𝑥𝑛 is nice. Show that is nice.

Fill in the blank with the same description that appeared in the definition. Again,
notice that we can have 𝑛 = 0, with nothing written above the line, and this means
that we just don’t suppose anything for that step. (It is a “base case”.)

We can do the same thing for relations, just by thinking of a relation as a property
of ordered pairs (or more generally, ordered triples, 4-tuples, etc.).

We can also generalize the reasoning that shows that this kind of definition really
works—there really is a property for which all of these different rules are valid. The

2.2. RECURSIVE DEFINITIONS 79

proof is not very hard, but it is very abstract. So we won’t do that here; you can find
it in Section 2.3.

Besides properties and relations, we can also recursively define functions. Again,
let’s start with an example.

The doubling function takes each number 𝑛 to the number 2 ⋅ 𝑛. That way of de-
scribing it assumes we already know how tomultiply—but we haven’t officially said
what multiplication is. But we can define doubling in a different way that doesn’t
depend on already understanding multiplication—using a recursive definition. We
do this in two steps. The two steps are exactly analogous to the two steps in an
inductive proof.

2.2.10 Definition
First (for the base case) we say what the doubling function does to zero. This is
easy: the the double of zero is zero.

double 0 = 0

Second (for the recursive step) we let 𝑛 be an arbitrary number, and we suppose that
we already know how to double 𝑛. Given this assumption, we say how to to double
suc 𝑛. That is, we suppose that we know double 𝑛, and we say what double(suc 𝑛)
should be in terms of that. For this, we can use the fact that 2 ⋅ (𝑛 + 1) = 2 ⋅ 𝑛 + 1 + 1.
(Though of course we haven’t officially defined multiplication or addition yet.) So
this is a reasonable rule to use:

double(suc 𝑛) = suc suc double 𝑛

Once we’ve done both of these steps, this is enough to settle what the doubling
function does to every number. For example, let’s calculate double 3 using these
rules. We know 3 = suc 2, and 2 = suc 1, and 1 = suc 0. So we can work it out like

80 CHAPTER 2. THE INFINITE

this:
double 0 = 0
double 1 = double(suc 0)

= suc suc(double 0)
= suc suc 0

double 2 = double(suc 1)
= suc suc double 1
= suc suc suc suc 0

double 3 = double(suc 2)
= suc suc double 2
= suc suc suc suc suc suc 0
= 6

We have successfully calculated that twice 3 is 6! And it’s clear that we can keep
going this way, using the result for 3 to get the result for 4, and using the result for 4
to get the result for 5, and so on. By applying the recursive rule over and over again,
we eventually reach a value for any number. (But it will take longer and longer to
get results for bigger and bigger numbers.) What makes this work is the basic fact
about numbers: we can reach every number in exactly one way, by starting from
zero, and repeatedly taking successors.

As we have already seen, recursive definitions and inductive proofs very often work
hand in hand. Often we use recursion to define a function, and then we use induction
to prove that it does what it’s supposed to do.

2.2.11 Example
For every number 𝑛, double 𝑛 is even.

Proof
We prove this by induction on numbers.

Base case. By definition, double 0 = 0, which is even.

Inductive step. Let 𝑛 be any number, and suppose for the inductive hypothesis that
double 𝑛 is even. We want to show that double(suc 𝑛) is also even. By definition,

double(suc 𝑛) = suc suc(double 𝑛)

Since double 𝑛 is even (by the inductive hypothesis), the definition of even tells us
that suc suc(double 𝑛) is also even. So we are done. □

2.2. RECURSIVE DEFINITIONS 81

Now that we have several different kinds of inductive proofs around, an important
part of problem solving is to decide which kind (if any) is appropriate for our goal.

2.2.12 Example
For every even number 𝑛, there is some number 𝑘 such that double 𝑘 = 𝑛.

Proof
This time we will use induction on the definition of even.

1. First we need to show that there is some number 𝑘 such that double 𝑘 = 0.
This is clear, since 0 has this property.

2. Next, let 𝑛 be any even number, and assume for the inductive hypothesis that
there is some number 𝑘 such that double 𝑘 = 𝑛. We need to show that there
is some number 𝑘′ such that double 𝑘′ = suc suc 𝑛 (corresponding to the
second part of the definition of *even$). In fact, we can let 𝑘′ = suc 𝑘. Then,
using the definition of the doubling function:

double(suc 𝑘) = suc suc(double 𝑘) = suc suc 𝑛 □

Here’s another example of a recursively defined function.

2.2.13 Definition
Let 𝑘 be a number. We can recursively define the function that adds 𝑘 to any number.
For any number 𝑛, we can write the result of this function as 𝑘 + 𝑛. For the base
case:

𝑘 + 0 = 𝑘
For the recursive step, we suppose we already know the result of 𝑘 + 𝑛, and we then
define the next step, which is the result of adding 𝑘 to suc 𝑛.

𝑘 + (suc 𝑛) = suc(𝑘 + 𝑛)

In this way we can recursively define addition for any two numbers, in terms of the
successor function and zero.

We can use the definition of addition to prove something that we’ve been taking for
granted: the successor function is the same thing as adding one.

2.2.14 Example
For any number 𝑛, suc 𝑛 = 𝑛 + 1.

82 CHAPTER 2. THE INFINITE

Proof
Remember that 1 = suc 0. So:

𝑛 + 1 = 𝑛 + suc 0 by the definition of 1
= suc(𝑛 + 0) by the recursive step of the definition of +
= suc 𝑛 by the base case of the definition of + □

So from now on, we can go ahead and use either the notation suc 𝑛 or the notation
𝑛+1 equally well: they bothmean the same thing. For example, this is an equivalent
way of rewriting the recursive definition of addition:

𝑘 + 0 = 𝑘
𝑘 + (𝑛 + 1) = (𝑘 + 𝑛) + 1

2.2.15 Exercise
Use the definition of addition to explicitly show the following:

(a) 1 + 1 = 2.
(b) 𝑘 + 2 = suc suc 𝑘, for any number 𝑘.

(Remember that 1 is defined to be suc 0 and 2 is defined to be suc 1 = suc suc 0.)

Let’s look at some more examples of using inductive proofs to show things about
addition.

2.2.16 Example
Prove by induction on numbers that 0 + 𝑛 = 𝑛 for every number 𝑛.

(Note that this doesn’t just follow directly from the first clause of the recursive
definition of +: that definition tells us about 𝑛 + 0, not 0 + 𝑛, and we haven’t shown
yet that those are the same thing. Don’t worry—we’ll show this very soon.)

Proof
We want to show that every number 𝑛 has the property that 0 + 𝑛 = 𝑛. The base
case of the proof is to show that 0 has this property: that is, 0 + 0 = 0. This follows
immediately from the first clause of the recursive definition of addition.

For the inductive step, we want to show that the property is inherited by successors.
For this, we’ll let 𝑛 be an arbitrary number, we’ll suppose that 𝑛 has the property,
and we’ll need show that suc 𝑛 has the property as well. That is, for an arbitrary

2.2. RECURSIVE DEFINITIONS 83

number 𝑛, we’ll suppose that 0 + 𝑛 = 𝑛, and try to show that 0 + suc 𝑛 = suc 𝑛. We
can show this using the recursive step of the definition of addition.

0 + suc 𝑛 = suc(0 + 𝑛) = suc 𝑛

(The first equation uses the recursive step of the recursive definition. The second
equation uses the inductive hypothesis, that 0 + 𝑛 = 𝑛.) □

2.2.17 Example
Prove that 1 + 𝑛 = 𝑛 + 1 for every number 𝑛.

Proof
We’ll prove this by induction. For the base case, we need to show that 1+0 = 0+1.
In fact, by the definition of addition, we know 1 + 0 = 1. And by the previous
exercise, we know 1 = 0 + 1. So the base case is done.

For the inductive step, we suppose that 1 + 𝑛 = 𝑛 + 1. (This is the inductive
hypothesis.) Then we want to show that 1 + suc 𝑛 = (suc 𝑛) + 1.

1 + suc 𝑛 = suc(1 + 𝑛) by the definition of addition
= suc(𝑛 + 1) by the inductive hypothesis
= suc suc 𝑛

The last step uses the fact we showed earlier, that taking the successor of a number
is the same as adding one to it: so we know that suc(suc 𝑛) = (suc 𝑛) + 1. That
finishes the proof. □

2.2.18 Example
Addition is associative: (𝑘 + 𝑚) + 𝑛 = 𝑘 + (𝑚 + 𝑛) for any numbers 𝑘, 𝑚, 𝑛.

Proof
We’ll show by induction that every number 𝑛 has the property that, for any numbers
𝑘 and 𝑚, (𝑘 + 𝑚) + 𝑛 = 𝑘 + (𝑚 + 𝑛).

For the base case:
(𝑘 + 𝑚) + 0 = 𝑘 + 𝑚 = 𝑘 + (𝑚 + 0)

This applies the base case of the inductive definition of addition twice.

For the inductive step, suppose (𝑘 + 𝑚) + 𝑛 = 𝑘 + (𝑚 + 𝑛). We want to show that

84 CHAPTER 2. THE INFINITE

(𝑘 + 𝑚) + suc 𝑛 = 𝑘 + (𝑚 + suc 𝑛).

(𝑘 + 𝑚) + suc 𝑛 = suc((𝑘 + 𝑚) + 𝑛) definition of +
= suc(𝑘 + (𝑚 + 𝑛)) inductive hypothesis
= 𝑘 + suc(𝑚 + 𝑛) definition of +
= 𝑘 + (𝑚 + suc 𝑛) definition of + □

Note a common structural feature of these proofs. In each example, the base case
of the proof uses the base case of the recursive definition of addition. Similarly, in
each example the inductive step of the proof uses the recursive step of the definition
of addition. This is usually how this kind of proof goes.

With a bit of practice, this kind of inductive proof should end up basically feeling
like routine symbol-juggling. Conceptually, the most important part is how to set
up a proof by induction. Figure out what you need to show, in order to do a proof by
induction: identify what property you want to prove every number has (“for every
number 𝑛, 𝑛 is nice”), and carefully spell out the base case (“0 is nice”) and the
inductive step (“if 𝑛 is nice, then suc 𝑛 is nice”). The details of how you end up
showing that each of these statements is true are not especially significant for these
exercises, though it’s worth working through them to get the feel of it.

2.2.19 Exercise
Prove by induction that for any numbers 𝑘 and 𝑛, suc 𝑘 + 𝑛 = suc(𝑘 + 𝑛).

2.2.20 Exercise
Prove by induction that addition is commutative: 𝑘+𝑛 = 𝑛+𝑘, for any numbers
𝑘 and 𝑛.
(Hint. Use Exercise 2.2.19.)

2.2.21 Exercise
Prove that, for any number 𝑛,

double 𝑛 = 𝑛 + 𝑛

2.2.22 Exercise
Prove that for any numbers 𝑚 and 𝑘,

𝑚 ≤ 𝑚 + 𝑘

2.2. RECURSIVE DEFINITIONS 85

(Use the recursive definition of ≤, Definition 2.2.3.)

2.2.23 Exercise
Prove that for any numbers 𝑚 and 𝑛, if 𝑚 ≤ 𝑛, then there exists a number 𝑘 such
that 𝑛 = 𝑚 + 𝑘.

2.2.24 Definition
We can also recursively define multiplication of numbers. For any number 𝑚, we
can define 𝑚 ⋅ 𝑛 recursively as follows:

𝑚 ⋅ 0 = 0
𝑚 ⋅ suc 𝑛 = 𝑚 ⋅ 𝑛 + 𝑚

For example, let’s work out 3 ⋅ 2.
3 ⋅ 0 = 0
3 ⋅ 1 = 3 ⋅ suc 0

= (3 ⋅ 0) + 3
= 0 + 3
= 3

3 ⋅ 2 = 3 ⋅ suc 1
= (3 ⋅ 1) + 3
= 3 + 3

No surprises there.

2.2.25 Example
For any number 𝑛, 1 ⋅ 𝑛 = 𝑛. (Again, notice that this isn’t the same as the definition,
because we haven’t shown that 𝑚 ⋅ 𝑛 and 𝑛 ⋅ 𝑚 are the same thing.)

Proof
We will prove this by induction.

Base case. By definition, 1 ⋅ 0 = 0.
Inductive step. For the inductive hypothesis, we assume that 1 ⋅ 𝑛 = 𝑛. We will
show that 1 ⋅ suc 𝑛 = suc 𝑛. In fact, by the definition of multiplication,

1 ⋅ suc 𝑛 = 1 ⋅ 𝑛 + 1 by the definition of ⋅
= 𝑛 + 1 by the inductive hypothesis
= suc 𝑛 by a fact we proved earlier □

86 CHAPTER 2. THE INFINITE

2.2.26 Exercise
Using the definitions of the doubling function and multiplication to show that,
for any number 𝑛 ∈ ℕ, double 𝑛 = 2 ⋅ 𝑛.

2.2.27 Exercise
Show that for any numbers 𝑘 and 𝑛,

𝑘 ⋅ double 𝑛 = double(𝑘 ⋅ 𝑛)

Now that we’ve seen a bunch of examples, let’s describe the technique of recursively
defining a function a bit more abstractly.

2.2.28 Technique (defining a function recursively)
Let’s say you are trying to come up with a function whose domain is the set of all
natural numbers: you have some other set 𝐴, and you want to come up with some
function 𝑓 ∶ ℕ → 𝐴. (You should fill in 𝐴 with whatever the codomain of your
function should be, and you should replace the letter 𝑓 with some suitable name
for the function you are defining, like double or whatever.) You can do this in two
steps.

(a) Choose a starting place: figure out which value the function should have at
zero. Write down:

𝑓0 = _______________

Fill in the blank with some description of an element of your set 𝐴.

(b) Choose a step rule: figure out a general rule for how the value of your function
for a number 𝑛 + 1 should depend on its value for the previous number 𝑛.
Again, you’ll be filling in the blank:

𝑓(𝑛 + 1) = _______________

(or alternatively, 𝑓(suc 𝑛) = , if you prefer to keep this notation). This
time, though, you don’t just have to describe an element of 𝐴 out of nowhere.
The thing you write down in the blank can use “𝑓𝑛”. When you describe the
value of 𝑓 for 𝑛 + 1, you get to assume that you already know 𝑓𝑛, the value
of 𝑓 for the previous number 𝑛.

Once you’ve finished both steps, you’re done. You will have successfully described
what the function 𝑓 should do guaranteed that there is one (and only one!) function

2.2. RECURSIVE DEFINITIONS 87

2.2.29 Exercise
(a) Write down a recursive definition for the exponentiation function that

takes each number 𝑛 to 2𝑛. (For example, 20 = 1, 21 = 2, 22 = 4, 23 = 8,
…) Feel free to use the doubling, addition, or multiplication functions that
have already been defined.

(b) Use your definition, together with the definitions of addition and multi-
plication (and properties of addition and multiplication we have already
proven), to show that for any number 𝑛,

2double 𝑛 = 2𝑛 ⋅ 2𝑛

Once again, there is a bit of magic going on with recursive definitions of functions.
How do we get to pull statements like 𝑘 + suc 𝑛 = suc(𝑘 + 𝑛) out of the air “by
definition”? In Section 2.3 we’ll redescribe this general technique more precisely,
and we’ll prove that it really works: if you do both of these two steps, you will
have correctly described one and only one function. The basic idea is the same as
for recursively defined properties and relations: it is possible to replace recursive
definitions with explicit definitions that have all the right properties. First, instead
of defining a function like double, we can recursively define a relation—call it the
doubling relation.

0 doubles 0 𝑚 doubles 𝑛
suc suc𝑚 doubles suc 𝑛

Notice how the two clauses of this definition correspond to the two parts of the
original recursive definition of the doubling function:

double 0 = 0
double 𝑛 = suc suc double 𝑛

The main difference is that we have rewritten this in a way that doesn’t assume
doubling is a function. We also know that we can replace this recursive definition
of the doubling relation with an explicit definition in terms of closed sets.

The only thing left to do is to show that this relation is functional: for every number
𝑛, there is exactly one number 𝑚 that doubles 𝑛. We can show this by induction.
(Check this!) Once we have shown that doubling is a functional relation, we know
that there is a function that takes each number to the unique number that doubles it.

Saying all this in general is, once again, pretty abstract, so we’ll put it in the “starred”
Section 2.3. The point is that the magic of recursive definitions can be eliminated,

88 CHAPTER 2. THE INFINITE

in principle, and replaced with more ordinary ways of defining properties, relations,
and functions. But since we know that we can eliminate recursive definitions, we
also don’t have to. Nor should we—because recursive definitions are incredibly
useful throughout logic.

2.3 The Recursion Theorem*

In this section we’ll say what is going on with recursive definitions more gener-
ally and more precisely, and then back the method up by proving that recursive
definitions work the way they are supposed to. This section is logically prior to
Section 2.2. There we assumed that recursive definition is legitimate, and used it.
Here we will prove it, providing justification for the claims we made before. So in
this section we shouldn’t rely on any of the things we proved in Section 2.2. We’ll
only be using the Axiom of Numbers.

First we’ll talk about recursive definitions for properties and relations, and then
we’ll move on to recursively defined functions.

Let’s start by looking more abstractly at how recursive definitions of properties
work. Officially, we can do this in terms of redursively defining a set, such as the
set of even numbers, or the set of pairs (𝑚, 𝑛) such that 𝑚 ≤ 𝑛. In Section 2.2 we
talked about rules. We can redescribe these rules in terms of functions. Consider
the recursive definition of even again:

0 is even
𝑛 is even

𝑛 + 2 is even

The first rule says that 0 is even. The second rule says that the function 𝑛 ↦ 𝑛 +
2 preserves evenness. Similarly, consider our recursive definition of less than or
equal.

𝑛 ≤ 𝑛
𝑚 ≤ 𝑛

𝑚 ≤ 𝑛 + 1

The first rule says that each pair (𝑛, 𝑛) stands in the ≤ relation, and second rule says
that the function (𝑚, 𝑛) ↦ (𝑚, 𝑛 + 1) preserves the ≤ relation.

Let’s generalize. (This is where things get a bit abstract.) Say an operation on a set
𝐴 is either an element of 𝐴, or a function from 𝐴 to 𝐴, or a two-place function from
𝐴 × 𝐴 to 𝐴, or a three-place function from 𝐴 × 𝐴 × 𝐴 to 𝐴, or …. If we count an

2.3. THE RECURSION THEOREM* 89

element of 𝐴 as a zero-place function, then we can say in general that an operation
is an 𝑛-place function from 𝐴 × ⋯ × 𝐴 to 𝐴, for some 𝑛 or other.

Suppose 𝐹 is a set of operations on some set 𝐴. These operations correspond to
the different rules of a recursive definition of a subset 𝑋 ⊆ 𝐴. For each 𝑛-place
operation 𝑓 ∈ 𝐹 , we can write down a rule:

𝑥1 ∈ 𝑋 … 𝑥𝑛 ∈ 𝑋
𝑓(𝑥1, …, 𝑥𝑛) ∈ 𝑋

If the set 𝑋 is recursively defined by these rules, then, first, we should be able to
use each of the rules in our proofs, and second, we should be able to do proof by
induction on these rules. We can state this carefully as follows.

2.3.1 Definition
Let 𝐹 be a set of operations on some set 𝐴.

• A subset 𝑋 ⊆ 𝐴 is 𝐹 -closed iff for each 𝑛-place function 𝑓 ∈ 𝐹 , and for any
elements 𝑥1, …, 𝑥𝑛 ∈ 𝑋, we also have 𝑓(𝑥1, …, 𝑥𝑛) ∈ 𝑋.

• A subset 𝑋 ⊆ 𝐴 has the 𝐹 -inductive property iff for any 𝐹 -closed set 𝑌 ,
𝑋 ⊆ 𝑌 .

• A subset 𝑋 ⊆ 𝐴 is 𝐹 -recursive iff 𝑋 is both 𝐹 -closed and 𝐹 -inductive.

In short, the 𝐹 -recursive set is the smallest 𝐹 -closed set. So to prove that recursive
definitions work, we just have to show that whenever we write down a recursive
definition of this kind, we have really described a unique set. This is the sort of
fact which is difficult to state correctly, in the abstract, but once we have stated it,
it really isn’t very hard to prove.

2.3.2 Exercise
For any set of operations 𝐹 on a set 𝐴, there is exactly one 𝐹 -recursive set.

Hint. Put in this form, the inductive property basically tells us exactly what need
to do: let

𝑋 = {𝑥 ∈ 𝐴 ∣ 𝑥 is in every 𝐹 -closed set}
Check that 𝑋 really is 𝐹 -recursive.

Before we move on, here is a cool way of thinking about things. If 𝐹 is a set of
operations on 𝐴 and 𝑋 is a subset of 𝐴, we can let

𝐹 (𝑋) = {𝑓(𝑥1, …, 𝑥𝑛) ∣ 𝑓 ∈ 𝐹 is an 𝑛-place operation and 𝑥1, …, 𝑥𝑛 ∈ 𝑋}

90 CHAPTER 2. THE INFINITE

This is the result of applying all the 𝐹 -operations to things in 𝑋 every way we
can. For 𝑋 to be 𝐹 -closed just means 𝐹 (𝑋) ⊆ 𝑋. We can also check that if 𝑋 is
𝐹 -recursive, then 𝑋 ⊆ 𝐹 (𝑋).

2.3.3 Exercise
(a) For any sets 𝑋 ⊆ 𝑌 , 𝐹 (𝑋) ⊆ 𝐹 (𝑌).
(b) If 𝑋 is 𝐹 -closed, then 𝐹 (𝐹 (𝑋)) ⊆ 𝐹 (𝑋).
(c) If 𝑋 is 𝐹 -recursive, then 𝑋 ⊆ 𝐹 (𝑋).
(d) Therefore, if 𝑋 is 𝐹 -recursive,

𝐹 (𝑋) = 𝑋

In other words, the set 𝑋 is a fixed point of the 𝐹 -operations. Applying those
operations to 𝑋 take you right back to the same set we started with. In particular,
because of the inductive property, 𝑋 is the least fixed point of 𝐹 : it is a subset of
every fixed point. This idea of a fixed point comes up in several important places
in this text (see Section 6.7, Section 7.5), and as we have already glimpsed here, it
is intimately connected to recursion and self-reference.

Now for recursively defined functions. As an example, recall the recursive definition
we gave for the doubling function.

double 0 = 0
double(suc 𝑛) = suc suc(double 𝑛) for each number 𝑛

This definition has two parts. The first part is a starting place: the value of double 0.
The second part is a “step” rule, which tells us how to get from the value of double 𝑛
to the value of double(suc 𝑛). We can represent the shape of this definition more
abstractly like this:

double 0 = 𝑧
double(suc 𝑛) = 𝑠(double 𝑛) for each number 𝑛

The starting place is 𝑧, which in this case is the number 0. The step rule is given
by the function 𝑠, which in this case is the function that takes each number 𝑚 to
suc suc𝑚. In general, the element 𝑧 ∈ 𝐴 and the function 𝑠 ∶ 𝐴 → 𝐴 correspond to
what we write down in the two blanks when we use Technique 2.2.28 to recursively
define a function.

The key fact about the natural numbers is that this always works. Given a starting
point 𝑧, and a step rule 𝑠, there is always exactly one function on the natural numbers
that they describe. We can put this a bit more precisely.

2.3. THE RECURSION THEOREM* 91

2.3.4 The Recursion Theorem
Let 𝐴 be a set, let 𝑧 be an element of 𝐴, and let 𝑠 ∶ 𝐴 → 𝐴 be a function. Then
there is a unique function 𝑓 ∶ ℕ → 𝐴 with these two properties:

𝑓0 = 𝑧
𝑓(suc 𝑛) = 𝑠(𝑓𝑛) for each number 𝑛

Call these the Recursive Properties.

In the rest of this section we’ll prove the Recursion Theorem. We have already
justified recursively defined relations, and induction using such definitions—so we
can use this technique in our proof. In particular, to get to the recursively defined
function 𝑓 , we’ll start by defining a closely related relation. For a number 𝑛 and an
element 𝑎 ∈ 𝐴, we define 𝑛 selects 𝑎 recursively as follow:

0 selects 𝑧 𝑛 selects 𝑎
suc 𝑛 selects 𝑠𝑎

What we still need to check is that this recursively defined relation picks out a
function. In the terms from Exercise 1.3.6, we will check that the set of pairs (𝑛, 𝑎)
such that 𝑛 selects 𝑎 is functional: this means that each number selects exactly one
value. Once we have done this, we can check that the corresponding function has
the Recursive Properties.

2.3.5 Exercise
Prove each of the following by induction on the definition of “selects.”

(a) If 0 selects 𝑎, then 𝑎 = 𝑧
(b) If suc 𝑛 selects 𝑎, then there is some 𝑏 ∈ 𝐴 such that 𝑛 selects 𝑏 and 𝑠𝑏 = 𝑎.

Hint. You can restate (a) as “for every pair (𝑛, 𝑎) such that 𝑛 selects 𝑎, if 𝑛 = 0,
then 𝑎 = 𝑧.” You can restate (b) in a similar way. These inductive proofs are
kind of trivial, which makes them look a little weird. They use the Injective
Property.

2.3.6 Exercise
(a) For each number 𝑛 ∈ ℕ, there is at least one 𝑎 ∈ 𝐴 such that 𝑛 selects 𝑎.
(b) For each number 𝑛 ∈ ℕ, there is at most one 𝑎 ∈ 𝐴 such that 𝑛 selects 𝑎.

Thus we can use this relation to pick out a (unique) function: there is exactly one
function 𝑓 ∶ ℕ → 𝐴 such that

𝑓𝑛 = 𝑎 iff 𝑛 selects 𝑎 for every 𝑛 ∈ ℕ and 𝑎 ∈ 𝐴

92 CHAPTER 2. THE INFINITE

2.3.7 Exercise
(a) For any function 𝑓 ∶ ℕ → 𝐴, 𝑓 has the Recursive Properties iff 𝑓 satisfies

Section 2.3.

(b) Explain how this completes the proof of the Recursion Theorem ((2.3.4)).

Hint for part (a). Here is another equivalent way of stating the Recursive Prop-
erties.

(i) For each 𝑎 ∈ 𝐴, 𝑓0 = 𝑎 iff 𝑎 = 𝑧.
(ii) For each 𝑎 ∈ 𝐴, 𝑓(suc 𝑛) = 𝑎 iff 𝑎 = 𝑠(𝑓𝑛).

2.4 Sequences and Strings

The elements of a set don’t come in any special “order”. But sometimes order
matters. The sentences dog bites man and man bites dog say different things,
but they both are made up from the very same set of symbols. The order of words
and letters matter.

Just like we did with numbers and sets, it will be useful to give a careful and precise
description of the structure of finite sequences. This will equip us with tools for
proving things about all ways of arranging certain things in a sequence, and for
defining functions on the set of all such sequences.

So far we have learned basic techniques for reasoning about sets and numbers. Fi-
nite sequences bring together both of these kinds of reasoning. Like a set, a se-
quence is a kind of collection, putting some things together. Like numbers, finite
sequences can be reasoned about using induction and recursion.

Sequences have a starting place—the empty sequence, which has length zero, con-
taining no elements at all. We’ll use the notation () for the empty sequence. (Includ-
ing the empty sequence is handy for similar reasons as counting zero as a number,
or the empty set as a set.) And there is a rule for building up longer sequences from
shorter ones, by adding on a single element. We can build up any finite sequence
at all by starting with the empty sequence, and adding on elements one at a time.
For example, we can extend the length-two sequence (Los Angeles, San Diego) by
adding San Jose to form the length-three sequences (Los Angeles, San Diego, San
Jose).

We’ll use the comma for the “append” operation that adds an element to a sequence.
This is being a little bit notationally tricky, so let’s pay attention to what’s happen-
ing. If we have a sequence 𝑠 and a new element 𝑎, then (𝑠, 𝑎) will be the extended

2.4. SEQUENCES AND STRINGS 93

sequence. That means that if we are going to be all official, the sequence

(Los Angeles,San Diego,San Jose)

should really be written

((((),Los Angeles),San Diego),San Jose)

We start with the empty sequence, and append elements one at a time. But this is
ugly and unwieldy. In general, we’ll hide parentheses that could be filled in from
context: for example, if we want to append two elements 𝑎 and 𝑏 to a sequence 𝑠,
instead of writing ((𝑠, 𝑎), 𝑏)), we can simplify this as (𝑠, 𝑎, 𝑏). Second, if we are
joining something to the empty sequence, we’ll usually make both the () and the
first comma invisible. For example, for a length one sequence, instead of writing
((), 𝑎), we can just write (𝑎). Putting both of these shorthands together, the ugly
notation

((((),Los Angeles),San Diego),San Jose)
gets simplified to

(Los Angeles,San Diego,San Jose)
which looks much nicer. But we can always “unpack” these shorthands if it helps
make our reasoning clearer. (This notation does raise some potential ambiguity
when we consider sequences whose elements are also sequences, but this generally
does not cause trouble in practice.)

(If you want to, you can suppose that this is also what’s going on with the ordered
pairs we have already seen, so there’s no notational ambiguity: the ordered pair
(Al,Bea) is the same thing as the length-two sequence that we could more officially
write as (((),Al),Bea). But you don’t have to think this—for our technical purposes,
we don’t have to answer this metaphysical question about what an ordered pair really
is. We just need to know that a pair has a first component and a second component,
somehow or other, and we don’t have to ask what kind of abstract glue holds them
together.)

We can build up any sequence this way, startingwith the empty sequence and adding
one element at a time.

(Al,Bea,Cece) = ((((),Al),Bea),Cece)

Furthermore, this is the only way to produce this sequence by adding elements one
at a time. It isn’t as if you could put together some other things in some other order
and end up with the very same sequence. In general, every finite sequence can be

94 CHAPTER 2. THE INFINITE

reached in exactly one way by starting with the empty sequence and adding things
one by one.

We can summarize this fact using “formation rule” notation, similar to what we did
for numbers. Let 𝐴 be any set. We’ll use the notation 𝐴∗ for the set of all finite
sequences of elements of 𝐴. There are two ways of building up these sequences,
which can be described with the following rules:

() is a sequence in 𝐴∗ 𝑠 is a sequence in 𝐴∗ 𝑎 is an element of 𝐴
(𝑠, 𝑎) is a sequence in 𝐴∗

Every sequence of elements of 𝐴 can be produced in exactly one way using these
two rules.

Thismeans that, just likewith numbers, we can do proofs by induction for sequences.
If we want to prove that every sequence of elements of 𝐴 has a certain property, it’s
enough to show two things. (a) The empty sequence has the property. (b) The
property is inherited whenever we add a single element to a sequence. We will look
at examples of this in a moment.

Inductive proofs are one important thing that sequences have in common with num-
bers. Another thing they have in common is recursive definitions. In Section 2.2
we showed how to give a recursive definition for a function whose domain is the set
of numbers. This works for sequences, too. Every sequence of elements of 𝐴 can
be reached in exactly one way, by starting with the empty sequence and adding ele-
ments one by one. So we can define an “output” of a function 𝑓 for every sequence
of elements of 𝐴 in two steps.

1. We say what the output is for the empty sequence, 𝑓().

2. We assume that we already have the output for a shorter sequence 𝑠, and then
we use this value 𝑓𝑠 to define the value of 𝑓 for a sequence which is just one
elemenbt longer, 𝑓(𝑎, 𝑠) for any element 𝑎 ∈ 𝐴.

Here’s an example.

2.4.1 Definition
Let 𝐴 be any set. Let’s recursively define the length of a sequence of elements of
𝐴. This is a function length ∶ 𝐴∗ → ℕ that takes each sequence to a number.
The definition has two parts. For the base case, we define the length of the empty
sequence:

length() = 0

2.4. SEQUENCES AND STRINGS 95

For the recursive step, we suppose that we already know the length of a sequence
𝑠, and we use this to define the length of the sequence that results from adding one
element to 𝑠. That is, supposing we know length 𝑠, we want to define length(𝑠, 𝑎).
This is easy: it should be just one more than the length of 𝑠.

length(𝑠, 𝑎) = suc(length 𝑠) for every 𝑎 ∈ 𝐴

A length 𝑛 sequence is also called an 𝑛-tuple. We use the notation 𝐴𝑛 for the set of
all length 𝑛 sequences of elements of 𝐴.

Here’s another example. The “comma” operation lets us add one element to a se-
quence. But another thing we sometimes want to do is add a bunch of elements at
once, sticking two long sequences together end to end. If 𝑠 and 𝑡 are both sequences,
we’ll call the result of sticking them together this way 𝑠 ⊕ 𝑡. We can give an official
definition of this operation using recursion. This is closely analogous to the defi-
nition of addition for numbers, so it might be helpful to compare the parts of this
definition side-by-side with Definition 2.2.13.

2.4.2 Definition
Let 𝐴 be any set. For any sequence 𝑠 ∈ 𝐴∗, we define the function that takes a
sequence 𝑡 ∈ 𝐴∗ to a sequence 𝑠 ⊕ 𝑡 recursively, as follows.

For the base case, we say how to join the empty sequence to 𝑠. This is easy:

𝑠 ⊕ () = 𝑠

For the recursive step, we suppose that we already know how to join 𝑠 to 𝑡, and then
use this to define the result of joining 𝑠 to the longer sequence (𝑡, 𝑎). The idea is
that we can do this by first joining 𝑠 to 𝑡, and then finally putting in the element 𝑎
as well.

𝑠 ⊕ (𝑡, 𝑎) = (𝑠 ⊕ 𝑡, 𝑎)

2.4.3 Example
Show explicitly using the definition:

(1, 2, 3) ⊕ (4, 5) = (1, 2, 3, 4, 5)

Proof
Remember that the notation (4, 5) is shorthand for

(((), 4), 5)

96 CHAPTER 2. THE INFINITE

Using the the definition of ⊕,

(1, 2, 3) ⊕ (((), 4), 5) = ((1, 2, 3) ⊕ ((), 4), 5)
= (((1, 2, 3) ⊕ (), 4), 5)
= (((1, 2, 3), 4), 5)

And when we simplify the comma notation, this is (1, 2, 3, 4, 5). □

Just like with numbers, recursive definitions and inductive proofs for sequences
work hand in hand.

2.4.4 Example
For any sequences 𝑠 and 𝑡 in 𝐴∗,

length(𝑠 ⊕ 𝑡) = length 𝑡 + length 𝑠

Proof
Let 𝑠 be any sequence in 𝐴∗. We’ll use induction to prove that every sequence
𝑡 ∈ 𝐴∗ has the property ?? 2.4.4.

Base case. For the empty sequence, by definition, 𝑠 ⊕ () = 𝑠. So:

length(𝑠 ⊕ ()) = length 𝑠 by the definition of ⊕
= length 𝑠 + 0 by the definition of +
= length 𝑠 + length() by the definition of length

Inductive step. Suppose that 𝑡 ∈ 𝐴∗ has the property (?? 2.4.4). (This assumption
is the inductive hypothesis.) We want to show that, for any element 𝑎 ∈ 𝐴, the
sequence (𝑡, 𝑎) also has the property (?? 2.4.4).

length(𝑠 ⊕ (𝑡, 𝑎)) = length(𝑠 ⊕ 𝑡, 𝑎) by the definition of ⊕
= suc(length(𝑠 ⊕ 𝑡)) by the definition of length
= suc(length 𝑠 + length 𝑡) by the inductive hypothesis
= length 𝑠 + suc(length 𝑡) by the definition of +
= length 𝑠 + length(𝑡, 𝑎) by the definition of length □

2.4. SEQUENCES AND STRINGS 97

2.4.5 Exercise
Let 𝐴 be a set with at least two elements.

(a) Is joining sequences commutative? That is, does

𝑠 ⊕ 𝑡 = 𝑡 ⊕ 𝑠

for all sequences 𝑠, 𝑡 ∈ 𝐴∗? If so, give a proof by induction; otherwise,
give a counterexample.

(b) Is joining sequences associative? That is, does

𝑠 ⊕ (𝑡 ⊕ 𝑢) = (𝑠 ⊕ 𝑡) ⊕ 𝑢

for all sequences 𝑠, 𝑡, 𝑢 ∈ 𝐴∗? If so, give a proof by induction; otherwise,
give a counterexample.

Hint. It might be helpful to look back at Example 2.2.18.

2.4.6 Definition
For any sequence 𝑠 of elements of 𝐴, we can recursively define the set of elements
in 𝑠 as follows.

elem() = ∅
elem(𝑠, 𝑎) = elem 𝑠 ∪ {𝑎}

This recursively defines a function

elem ∶ 𝐴∗ → 𝑃 𝐴

2.4.7 Exercise
Use the definition to show explicitly, step by step:

elem(1, 2, 3) = {1, 2, 3}

2.4.8 Exercise
For any set 𝐴, and any sequences 𝑠 and 𝑡 of elements of 𝐴,

elem(𝑠 ⊕ 𝑡) = elem 𝑠 ∪ elem 𝑡

Let’s summarize the two main things we have learned to do with sequences in this
section.

98 CHAPTER 2. THE INFINITE

2.4.9 Technique (proof by induction for sequences)
Suppose you have some set 𝐴, and you want to show:

For every sequence 𝑠 of elements of 𝐴, 𝑠 is nice.

Here “𝑠 is nice” is a placeholder for any statement about 𝑠. You can do this in two
steps.

1. Base case. Show that the empty sequence is nice.
2. Inductive step. Show that for any sequence 𝑠 ∈ 𝐴∗, and any element 𝑎 ∈ 𝐴,

if 𝑠 is nice, then the longer sequence (𝑠, 𝑎) is also nice.

Then you’re done: this is enough to show that every sequence of elements of 𝐴 is
nice.

2.4.10 Technique (recursively defining a function on sequences)
Suppose you want to come up with a function whose domain is the set 𝐴∗ of all
sequences of elements of 𝐴. That is, for some set 𝐵, you’re trying to come up with
a function 𝑓 ∶ 𝐴∗ → 𝐵. You can do this in two steps.

1. Choose a value of 𝑓 for the empty sequence. That is, you’ll write down

𝑓() = ________________

Fill in the blank with some description of an element of 𝐵.

2. Choose a rule for getting a value of 𝑓 for a sequence using the value of 𝑓 for
a shorter sequence. That is, you’ll write down

For any sequence 𝑠 and element 𝑎 ∈ 𝐴, 𝑓(𝑠, 𝑎) = ___________________

Fill in the blank with another description of an element of 𝐵, where this
description is allowed to use 𝑓(𝑠) (as well as 𝑎).

Once you have done these two things, you have precisely described one (and only
one!) function from 𝐴∗ to 𝐵.

The set of numbers and the set of sequences of elements of a set are both inductive
structures. Inductive structures play a starring role throughout logic, and in this
text we’ll encounter many others. (For example, terms, formulas, formal proofs,
and programs.) For this reason, proofs by induction and recursive definitions are
two very important fundamental skills in logic.

There is one particularly important kind of sequence. This text consists of symbols
written down in order to form words and sentences, as well as special logical nota-
tion. When we express ideas, we almost always do it by stringing together symbols

2.4. SEQUENCES AND STRINGS 99

in some order (whether they are written, spoken, signed, or otherwise). So the the-
ory of finite sequences of symbols—or strings—is centrally important for studying
language, philosophy, and logic.

Strings bridge between the finite and the infinite. There are only finitely many sym-
bols which can be typed using a standard keyboard. But by typing these symbols in
different orders, in sequences of different lengths, they can be used to represent in-
finitely many different ideas—all the books ever written, and infinitely manymerely
possible books besides.

We will use strings to represent language—including words, sentences, logical for-
mulas, programs, and proofs. It will be helpful to fix in advance a standard alphabet
for this purpose. We could get by with the twenty-six English letters and a few punc-
tuation marks—or if we wanted to be very austere, we could get away with just dots
and dashes like inMorse code, or zeros and ones or some other very simple alphabet.
But let’s be a little more extravagant.

Since 1991, the Unicode Consortium has standardized a very large “alphabet”,
called the Unicode Character Set, which includes all the symbols used in most
human writing systems. This includes not just letters, punctuation marks, and
spaces, but also many technical symbols like ∀, →, and ⊕, and even emoji. Unicode
is nowadays a worldwide standard, especially for representing text on the Internet,
which of course is written in many different natural and artificial languages.
(This text is also written using Unicode.) Our standard alphabet will consist
of the entire Unicode 8.0 Character Set. This is a set of about 120,000 different
symbols—including all of the symbols used in this text. (But in practice we will
use fewer than a hundred symbols or so, so if you want you can use a significantly
smaller alphabet without changing anything.) We will use the notation 𝔸 for
the standard alphabet, the set of basic symbols. A symbol is any element of the
standard alphabet. A string is a finite sequence of symbols. We will use the
notation 𝕊 for the set of all strings (which we could also call 𝔸∗).

(In what follows we often won’t bother to distinguish the symbol 𝑎 from the length-
one string (𝑎). Officially, nothing we have said commits us to a view about whether
these are the same thing or two different things. But from now on, we’ll treat them
as the same thing, for convenience.)

We’ll be talking about strings of symbols a lot. In this written medium, we also use
strings of symbols in order to talk—strings of symbols that represent English words,
as well as technical notation. For instance, this paragraph begins with the string of
symbols We'll be talking about strings, and so on. It will be important to be
distinguish these two activities, which are standardly called use and mention: that

100 CHAPTER 2. THE INFINITE

is, using strings of symbols to say things, and mentioning strings of symbols to talk
about the symbols themselves. So it will be helpful to have some special notation.

2.4.11 Notation
We use the notation ABC to refer to the three-letter string consisting of A followed
by B followed by C.

Instead of using the join symbol ⊕, we can just write two strings next to each other,
so 𝑠𝑡 is the same as 𝑠 ⊕ 𝑡. Likewise, A𝑠 is the same as A ⊕ 𝑠, and ABC𝑠DEF is the
same as ABC ⊕ 𝑠 ⊕ DEF. This is convenient when we are building up complicated
strings out of shorter ones. (This is similar to the convention in algebra of writing
𝑥𝑦 for multiplication, instead of 𝑥 ⋅ 𝑦 or 𝑥 × 𝑦.)

2.4.12 Exercise
Let 𝑠 = tu. Which of these strings are the same?

(a) stu
(b) s ⊕ tu
(c) 𝑠 ⊕ tu
(d) s ⊕ tu
(e) 𝑠tu
(f) s ⊕ 𝑠
(g) s𝑠
(h) t ⊕ u ⊕ t ⊕ u
(i) 𝑠 ⊕ tu
(j) s ⊕ ⊕ tu

2.4.13 Exercise
When you log into a website, to protect your privacy your password usually isn’t
shown directly on your screen: instead, a string of dots with the same length as
your password is displayed. Instead of the string password, you’ll see the string
••••••••. For each string 𝑠, let dots 𝑠 be the string of dots with the same length
as 𝑠.

(a) Write out a recursive definition of the dots function.

(b) Use your definition to show

length(dots 𝑠) = length 𝑠

2.5. OFFICIAL PRINCIPLES FOR SEQUENCES* 101

(c) Use your definition to show

elem(dots 𝑠) = {•}

(d) Use your definition to show

dots(𝑠 ⊕ 𝑡) = dots 𝑠 ⊕ dots 𝑡

(e) Show that
length 𝑠 = length 𝑡 iff dots 𝑠 = dots 𝑡

2.5 Official Principles for Sequences*

Just like we did with numbers, we can describe the inductive structure of sequences
more officially using an axiom, which is closely analogous to the Axiom of Num-
bers. This new axiom is a little more complicated, though, because the adding-
one-element operation (,) is a little more complicated than the successor function.
Likewise, we can more precisely state, and more carefully justify, the technique of
recursively defining a function on strings with a theorem—aRecursion Theorem for
Sequences, which is closely analogous to the Recursion Theorem for numbers. The
idea is basically the same as with numbers, but again it’s a little bit more compli-
cated. I’ll state both of these explicitly here for completeness. But for this course,
the more important thing to have a handle on is the practical skills of inductive
proofs and recursive definitions—not the official statements we will give for the
Axiom of Sequences or the Recursion Theorem for Sequences. The Axiom of Se-
quences is just a way of precisely spelling out the main intuitive idea:

Every sequence can be reached in exactly one way by starting from the
empty sequence and adding elements one by one.

Similarly, the Recursion Theorem for Sequences is just a way of precisely spelling
out the intuitive idea that we can define a function on all sequences using a “starting
place” and a “step rule.”

2.5.1 Axiom of Sequences
Let 𝐴 be a set. There is a set of finite sequences 𝐴∗, an empty sequence () which is
an element of 𝐴∗, and an “append” function (,) that takes each sequence 𝑠 ∈ 𝐴∗

and each element 𝑎 ∈ 𝐴 to a sequence (𝑠, 𝑎), which have the following properties.

(a) Injective Property.

102 CHAPTER 2. THE INFINITE

(i) The empty sequence () is not in the range of the append function (,).
That is, there is no sequence 𝑠 ∈ 𝐴∗ and element 𝑎 ∈ 𝐴 such that
(𝑠, 𝑎) = ().

(ii) The append function (,) is one-to-one. That is, for any sequences 𝑠 and
𝑠′ in 𝐴∗, and any elements 𝑎 and 𝑎′ in 𝐴, if (𝑠, 𝑎) = (𝑠′, 𝑎′) then 𝑠 = 𝑠′

and 𝑎 = 𝑎′.

(b) Inductive Property. Let 𝑋 be a set. Suppose

(i) the empty string () is in 𝑋, and

(ii) for each sequence 𝑠 ∈ 𝑋 and element 𝑎 ∈ 𝐴 and, (𝑠, 𝑎) is also in 𝑋.

Then 𝑋 includes every sequence in 𝐴∗: that is, 𝐴∗ ⊆ 𝑋.

2.5.2 The Recursion Theorem for Sequences
Let 𝐴 and 𝐵 be any sets. For any element 𝑒 ∈ 𝐵 and any function 𝑐 ∶ 𝐵 × 𝐴 → 𝐵,
there is a unique function 𝑓 ∶ 𝕊 → 𝐵 with the following two Recursive Properties:

𝑓() = 𝑒
𝑓(𝑠, 𝑎) = 𝑐(𝑓𝑠, 𝑎) for each element 𝑎 ∈ 𝐴 and sequence 𝑠 ∈ 𝐴∗

Proof Sketch
We can use the same idea we used for numbers. First, we can use the recursive
properties to recursively define a relation between strings and values (using Ex-
ercise 2.3.2). Second, we can show that this relation is functional, and thus that
it picks out a function. Finally, we can check that this function has the recursive
properties.

For a sequence 𝑠 and an element 𝑏 ∈ 𝐵, we define 𝑠 selects 𝑏 recursively by the
following two rules:

() selects 𝑒
𝑠 selects 𝑏 𝑎 ∈ 𝐴
(𝑠, 𝑎) selects 𝑐(𝑏, 𝑎)

As in the proof of the Recursion Theorem for Numbers, we can prove the following
things.

1. (a) If () selects 𝑏, then 𝑏 = 𝑒.
(b) If (𝑠, 𝑎) selects 𝑏, then there is some 𝑏′ such that 𝑠 selects 𝑏′ and 𝑏 =

𝑐(𝑏′, 𝑎).

2.6. PROPERTIES OF NUMBERS AND STRINGS 103

2. Any function 𝑓 has the Recursive Properties iff, for each sequence 𝑠 and
𝑏 ∈ 𝐵,

𝑓𝑠 = 𝑏 iff 𝑠 selects 𝑏

Finally we can prove (by induction on sequences)

3. Each sequence selects exactly one value.

This implies that there really is exactly one function 𝑓 with the Recursive Proper-
ties. □

As we’ll see later, induction and recursion make sense not just for numbers and
strings, but also for formulas, proofs, and many other kinds of thing which are im-
portant for logic. Each of these inductive structures has both an Inductive Property
and a corresponding Recursion Theorem.

2.6 Properties of Numbers and Strings

At this point, we have stated the Axiom of Numbers and the Axiom of Sequences:
these describe the fundamental structure of finite numbers and finite sequences, us-
ing the Injective Property and Inductive Property for each of them. We’ve also given
recursive definitions for a few important operations on these structures: especially
addition (+), multiplication (⋅), concatenation (⊕), and length. In this section we’ll
summarize some other important facts about how these operations on numbers and
sequences work, which follow from the axioms and definitions we have already
given. Working through all the proofs of the facts in this section would provide
good extra exercises for getting practice. Even though I’ve marked them as “Exer-
cises,” though, they won’t be assigned as homework and I won’t go over them in
class—that would just take us too much time, and we want to move on to more in-
teresting things. Still, it’s important to know not only that the facts listed here about
numbers and strings are true, but also that we can prove all of these facts from our
basic axioms and definitions—even though we won’t actually bother to do this.

It will be helpful to refer back to these facts later on.

2.6.1 Exercise (Cancellation Property for Addition)
For any numbers 𝑛, 𝑘, and 𝑘′, if 𝑛 + 𝑘 = 𝑛 + 𝑘′, then 𝑘 = 𝑘′.

Hint. Prove that every number 𝑛 has the property:

For any 𝑘, 𝑘′ ∈ ℕ, if 𝑛 + 𝑘 = 𝑛 + 𝑘′, then 𝑘 = 𝑘′.

104 CHAPTER 2. THE INFINITE

We defined 𝑚 ≤ 𝑛 recursively, in Section 2.2, and proved that this relation was
reflexive and transitive. Here are some more related facts.

2.6.2 Exercise
For any numbers 𝑚 and 𝑛, 𝑚 ≤ 𝑛 iff there is some number 𝑘 ∈ ℕ such that
𝑚 + 𝑘 = 𝑛.
Hint. For the left-to-right direction, use induction on the definition of ≤. For the
right-to-left direction, use induction on 𝑘.

2.6.3 Exercise
If 𝑛 ≤ 0 then 𝑛 = 0.
Hint. We can restate this: for any pair (𝑛, 𝑘) such that 𝑛 ≤ 𝑘, if 𝑘 = 0, then
𝑛 = 0.

2.6.4 Exercise
If 𝑚 ≤ 𝑛 and 𝑛 ≤ 𝑚, then 𝑚 = 𝑛. (In other words, ≤ is anti-symmetric.)

2.6.5 Definition
We say 𝑚 is (strictly) less than 𝑛 (abbreviated 𝑚 < 𝑛) iff 𝑚 ≤ 𝑛 and 𝑚 ≠ 𝑛.

2.6.6 Exercise
There is no natural number 𝑛 < 0.

2.6.7 Exercise
𝑚 ≤ 𝑛 iff 𝑚 < suc 𝑛, for any numbers 𝑚 and 𝑛.

2.6.8 Exercise
For any numbers 𝑚 and 𝑛, either 𝑚 ≤ 𝑛 or 𝑛 ≤ 𝑚. (In other words, ≤ is com-
plete.)

A relationwhich is reflexive, transitive, and anti-symmetric is called a partial order.
A partial order which is also complete is called a total order. So we have shown
that the natural numbers are totally ordered.

2.6.9 Exercise
(a) If 𝑚 ≤ suc 𝑛, then either 𝑚 ≤ 𝑛 or 𝑚 = suc 𝑛.
(b) If 𝑚 < suc 𝑛, then either 𝑚 < 𝑛 or 𝑚 = 𝑛.

2.6. PROPERTIES OF NUMBERS AND STRINGS 105

2.6.10 Exercise (The Least Number Property)
Any non-empty set of numbers 𝑋 has a least element: that is, there is some
𝑚 ∈ 𝑋 such that 𝑚 ≤ 𝑛 for every 𝑛 ∈ 𝑋. (Another name for this property is that
≤ is a well-ordering.)
Hint. Suppose 𝑋 has no least element, and prove by induction that, for every
number 𝑛, the set {𝑘 ∈ 𝑋 ∣ 𝑘 < 𝑛} is empty.

2.6.11 Exercise
Let 𝑋 be any set of numbers. Show that 𝑋 has at most one least element: that
is, there is at most one 𝑚 ∈ 𝑋 such that, for every number 𝑛 ∈ 𝑋, 𝑚 ≤ 𝑛.

Let’s collect together some of the useful basic facts we’ve established. Some of
these are definitions, and others were proved as examples or in exercises. This
particular collection of facts will be useful to refer back to later.

2.6.12 The Minimal Theory of Arithmetic
The following properties hold for all numbers 𝑚, 𝑛, 𝑘:

1. 0 is not a successor.
2. No two numbers have the same successor.
3. 𝑛 + 0 = 𝑛.
4. 𝑚 + suc 𝑛 = suc(𝑚 + 𝑛)
5. 𝑛 ⋅ 0 = 0
6. 𝑚 ⋅ suc 𝑛 = (𝑚 ⋅ 𝑛) + 𝑚
7. 𝑛 is not less than 0
8. 𝑚 ≤ 𝑛 iff 𝑚 < suc 𝑛
9. 𝑚 ≤ 𝑛 or 𝑛 ≤ 𝑚

We can do some similar things for sequences. Since the most important kind of
sequences in what follows are strings, we will focus on them.

2.6.13 Definition
For strings 𝑠 and 𝑡, we say 𝑠 is an initial substring of 𝑡 (abbreviated 𝑠 ⪯ 𝑡) iff there
is some string 𝑢 ∈ 𝕊 such that 𝑠 ⊕ 𝑢 = 𝑡. We say 𝑠 is a proper initial substring of
𝑡 (abbreviated 𝑠 ≺ 𝑡) iff 𝑠 ⪯ 𝑡 and 𝑠 ≠ 𝑡.

106 CHAPTER 2. THE INFINITE

2.6.14 Exercise
𝑠 ⪯ 𝑡 iff either 𝑠 is empty, or for some symbol 𝑎, 𝑠 = 𝑎 ⊕ 𝑠′, 𝑡 = 𝑎 ⊕ 𝑡′, and
𝑠 ⪯ 𝑡′.

2.6.15 Exercise
If 𝑠 ⪯ 𝑡 then length 𝑠 ≤ length 𝑡.

2.6.16 Exercise (Cancellation Property for Strings)
If 𝑠 ⊕ 𝑡 = 𝑠′ ⊕ 𝑡, then 𝑠 = 𝑠′. Likewise, if 𝑠 ⊕ 𝑡 = 𝑠 ⊕ 𝑡′, then 𝑡 = 𝑡′.

2.6.17 Exercise
If 𝑠 ⪯ 𝑡 and 𝑠′ ⪯ 𝑡, then either 𝑠 ⪯ 𝑠′ or 𝑠′ ⪯ 𝑠.

2.6.18 Exercise (The Shortest String Property)
Let 𝑋 be any non-empty set of strings. Then 𝑋 has a minimal-length element:
that is, there is some 𝑠 ∈ 𝑋 such that every string in 𝑋 is at least as long as 𝑠.

The Shortest String Property underlies an alternative induction technique for reason-
ing about strings, which is usually called strong induction. Say we want to prove
that every string is nice. We can do it like this. Let 𝑠 be any string, and show the
following:

If every string which is strictly shorter than 𝑠 is nice, then 𝑠 is also
nice.

It then follows that every string is nice. The reason this follows, is because otherwise
the set 𝑋 of non-nice strings would be non-empty, in which case it would have a
minimal-length element. But that would mean that 𝑠 is a non-nice string such that
every string shorter than 𝑠 is nice—and what the “strong induction” proof shows
is precisely that there is no such string. Strong induction on strings is a bit more
flexible than ordinary (“primitive”) induction on strings, so it is occasionally handy.

2.6.19 The Minimal Theory of Strings
Let 𝑠 and 𝑡 be strings, and let 𝑎 and 𝑏 be strings each of which consists of a single
symbol.

1. 𝑎 ⊕ 𝑠 ≠ ()
2. If 𝑎 ⊕ 𝑠 = 𝑎 ⊕ 𝑡, then 𝑠 = 𝑡.
3. If 𝑎 and 𝑏 are distinct symbols, then 𝑎 ⊕ 𝑠 ≠ 𝑏 ⊕ 𝑡.
4. () ⊕ 𝑠 = 𝑠
5. 𝑎 ⊕ (𝑠 ⊕ 𝑡) = (𝑎 ⊕ 𝑠) ⊕ 𝑡

2.7. REVIEW 107

6. 𝑎 = 𝑎 ⊕ ()
7. The empty string () is no longer than 𝑠.
8. 𝑠 is no longer than () iff 𝑠 = ().
9. 𝑎 ⊕ 𝑠 is no longer than 𝑏 ⊕ 𝑡 iff 𝑠 is no longer than 𝑡.

10. Either 𝑠 is no longer than 𝑡, or 𝑡 is no longer than 𝑠 (or perhaps both).
11. Either 𝑠 = (), or else there is some single-symbol string 𝑎 and string 𝑡 such

that 𝑠 = 𝑎 ⊕ 𝑡.

2.7 Review

Key Techniques

• You can use induction to prove that every number has a certain property.
(Technique 2.1.5)

• You can use a recursive definition to come up with a function whose domain
is the set of all numbers. (Technique 2.2.28)

• You can use induction on sequences to prove that every sequence of ele-
ments from a certain set has a certain property. (Technique 2.4.9)

• You can use recursion on sequences to come up with a function whose do-
main is the set of all sequences. (Technique 2.4.10)

Key Concepts and Facts

• The Injective Property of numbers intuitively says that every number can
be reached in at most one way by starting from zero and taking successors.

• The Inductive Property of numbers intuitively says that every number can
be reached in at least one way by starting from zero and taking successors.

• The Recursion Theorem intuitively says that recursive definitions work. If
you give a value for zero, and a “step function” to go from the value for 𝑛 to
the value for 𝑛 + 1, then this pins down exactly one function which is defined
for every number.

• Together, the Injective Property and Inductive Property for numbers tell us
everything we need to know about the structure of numbers: we can use these
basic properties to prove familiar facts about how operations like addition and
multiplication work.

108 CHAPTER 2. THE INFINITE

• The Injective Property of Sequences intuitively says that every seqyebce
can be reached in at most one way by starting from the empty sequence and
adding elements one at a time.

• The Inductive Property of Sequences intuitively says that every string can
be reached in at least one way by starting from the empty sequence and adding
symbols one at a time.

• The Recursion Theorem for Sequences intuitively says that recursive defi-
nitions on sequences work. If you give a value for the empty sequence, and a
rule for going from the value for a sequence 𝑠 to a value for any string (𝑠, 𝑎)
which is one element longer, then this pins down exactly one function which
is defined for every sequence.

• The Injective Property and Inductive Property for sequences tells us every-
thing we need to know about the structure of sequences: we can use these ba-
sic properties to prove facts about operations like joining sequences together
work.

• Sequences of symbols are especially important, and they are called strings.
We have to be careful to distinguish when we are using a string of symbols
to say something about the world, and when we are mentioning a string to
say something about the string itself. We have some special notation to help
with this, like this: We have some special notation. (Notation 2.4.11)

Chapter 3

Terms

Philosophy is written in this grand book—I mean the
Universe—which stands continually open to our gaze,
but it cannot be understood unless one first learns to
comprehend the language and interpret the symbols
in which it is written.

Galileo Galilei, The Assayer (1623)

3.1 Signatures and Structures

We have talked about the set of natural numbers, and we have talked about various
special features they have: the starting place zero, the “next-number” successor
function, operations like addition and multiplication, relations like ≤. In the course
of doing this, we also introduced notation: the symbols 0, suc, +, ⋅, and ≤, among
others. Now we will take a step back, and study what we were doing when we did
that, when we used strings to refer to things. As we go on through this text we
will take many steps like this, building up a richer and richer theory of more and
more of what we have been saying and doing—making claims, defining new terms,
and proving things. But here we start small, with a crude sketch of some basic
relationships between the kind of language we use, and the world that it is intended
to describe.

We have the number zero, and we have the string 0. It is always important to re-
member that these are two different things, which should not be confused with each
other. But of course there is an important relationship between them: we use the

109

110 CHAPTER 3. TERMS

string 0 as a name for the number zero. Similarly, suc is a name for the successor
function suc, + is a name for the addition function, and so on. When we put together
a bunch of these strings, we get a very simple kind of language, which we call a
signature. When we specify what each of these strings is supposed to mean, we
get something that we call a structure.
A language has words for different kinds of things, such as an individual object like
zero, a function like suc, or a relation like ≤. A signature spells out the basic words
of a language, and what type of thing each word is supposed to stand for. These
“types” will constrain what ways of putting words together make grammatical sense.
But grammar will wait until Section 3.2.

The signature of the language of arithmetic has five basic “words” in it, with
the obvious types: 0 is a name for an individual thing, suc is a name for a one-
place function, + and ⋅ are names for two-place functions, and ≤ is the name for a
two-place relation. The standard structure that corresponds to this consists of the
set of all natural numbers ℕ together with a function that tells the story about how
each of these names works: the symbol 0 is mapped to the number zero, suc is
mapped to the successor function, and so on. This “word-world” function is called
the extension function.

The strings that we use as names for functions are ordinarily called “function
symbols”—despite the fact that they don’t have to consist of a single symbol from
the alphabet. For instance, it’s fine to use the length-three string suc as a function
symbol. (So this is a slightly different meaning of “symbol” from when we say “a
string is a sequence of symbols”.) But we shouldn’t be totally loosey-goosey: it
would make things a complete mess if we used, say,) ∧ (x, as the notation for
one of our basic function symbols. So we’d better not allow strings like this. Call
a string that does not contain any parentheses or commas a token (more on this in
Section 3.3; in Section 5.1 we will impose some extra constraints on tokens).1

1A restriction that may not be so obviously restrictive is that all of our names, function symbols,
and predicates are strings. As we will see in Section 4.2, this puts some restrictions on how “big” a
language can be. In other contexts sometimes it’s nice to be less restrictive, and use things other than
strings as the “signs” in signatures and structures. For instance, it can occasionally be nice to think
about a “Lagadonian language” in which each object serves as a name for itself. But for the purposes
of this text it makes sense to be more restrictive: we are focusing on logical languages that can be
written down as strings of symbols—like the languages that humans use.

The term “Lagadonian language” comes from Lewis (1986). It is inspired by Gulliver’s Travels:
the professors in the “school of languages” in the city of Lagado proposed the following scheme:

An expedient was therefore offered, “that since words are only names for things, it
would be more convenient for all men to carry about them such things as were neces-
sary to express a particular business they are to discourse on.” … [M]any of the most
learned and wise adhere to the new scheme of expressing themselves by things; which

3.1. SIGNATURES AND STRUCTURES 111

3.1.1 Definition
A signature 𝐿 consists of four components. First, there are three disjoint sets of
tokens:

1. The set of names of 𝐿
2. The set of function symbols of 𝐿
3. The set of predicates of 𝐿

The fourth component is a function that takes each function symbol or predicate to
a non-zero natural number, which is called its adicity—its number of arguments.
For example, if the adicity of a predicate is two, we call it a two-place predicate.

3.1.2 Example
The signature of the language of arithmetic has one basic name 0, one one-place
function symbol suc, two two-place function symbols + and ⋅, and one two-place
predicate ≤. We also call this signature 𝐿ℕ.

The next important question is how to interpret all these symbols. The things we
use to represent possible interpretations of a signature are called structures.

3.1.3 Definition
Let 𝐿 be a signature. A structure 𝑆 with signature 𝐿 (for short, an 𝐿-structure)
consists of the following two components.

1. A non-empty set 𝐷𝑆 called the domain of 𝑆.

2. An extension function, written [⋅]𝑆 , which takes each basic symbol of 𝐿 to
an appropriate kind of thing.

a. The extension of each name 𝑐 in 𝐿 is an element of the domain of 𝑆,
which we write [𝑐]𝑆 .

has only this inconvenience attending it, that if a man’s business be very great, and of
various kinds, he must be obliged, in proportion, to carry a greater bundle of things
upon his back, unless he can afford one or two strong servants to attend him. I have
often beheld two of those sages almost sinking under the weight of their packs, like
pedlars among us, who, when they met in the street, would lay down their loads, open
their sacks, and hold conversation for an hour together; then put up their implements,
help each other to resume their burdens, and take their leave.
But for short conversations, a man may carry implements in his pockets, and under his
arms, enough to supply him; and in his house, he cannot be at a loss. Therefore the
room where company meet who practise this art, is full of all things, ready at hand,
requisite to furnish matter for this kind of artificial converse. [TODO CITE]

112 CHAPTER 3. TERMS

b. The extension of each 𝑛-place function symbol 𝑓 in 𝐿 is an 𝑛-place
function 𝐷𝑛

𝑆 → 𝐷𝑆 , which takes any 𝑛-tuple of elements of the domain
of 𝑆 to an element of the domain of 𝑆. We call this function [𝑓]𝑆 .

c. The extension of each 𝑛-place predicate symbol 𝐹 is a subset of 𝐷𝑛
𝑆 ,

that is, a set of 𝑛-tuples of elements of the domain of 𝑆, which we call
[𝐹]𝑆 .

Another name for a structure is a model. This term is a bit old-fashioned, but we
still use it in certain contexts.

3.1.4 Definition
The standard model of arithmetic, which we also just call ℕ, is specified as fol-
lows:

1. The domain 𝐷ℕ is the set of natural numbers ℕ.

2. The extension of the name 0 is the number zero.

3. The extension of the function symbol suc is the successor function.

4. The extension of the function symbol + is the addition function.

5. The extension of the function symbol ⋅ is the multiplication function.

6. The extension of the relation symbol ≤ is the set of pairs (𝑚, 𝑛) such that 𝑚 is
less than or equal to 𝑛.

We can restate this more concisely:

𝐷ℕ = ℕ
[0]ℕ = 0

[suc]ℕ = suc
[+]ℕ(𝑚, 𝑛) = 𝑚 + 𝑛 for each 𝑚, 𝑛 ∈ ℕ
[⋅]ℕ(𝑚, 𝑛) = 𝑚 ⋅ 𝑛 for each 𝑚, 𝑛 ∈ ℕ

[≤]ℕ = {(𝑚, 𝑛) ∈ ℕ × ℕ ∣ 𝑚 ≤ 𝑛}

We standardly use the symbols 0, +, and so on to talk about numbers. But we could
also interpret them in other ways. There are non-standard structures that have the
same signature as the standard model of arithmetic, but which assign its words very
different “meanings”. Here’s a simple example:

3.1. SIGNATURES AND STRUCTURES 113

3.1.5 Example
There is a structure 𝑆 with the signature (0, suc, +) given as follows:

1. The domain of 𝑆 consists of all of the buildings in Los Angeles.

2. The extension of 0 in 𝑆 is the Natural History Museum of Los Angeles
County.

3. The extension of suc in 𝑆 is the function that takes each building to the near-
est building directly east of it. (This will map buildings at the eastern edge
of LA all the way around the world to the West Side again.)

4. The extension of + in 𝑆 is the function that takes two buildings to whichever
one of them contains the most dinosaur skeletons (or the building farthest
east in the case of a tie).

The main point of the language of arithmetic is to talk about the standard number
structure ℕ. But non-standard structures are also important. As we will see later on
(especially in Section 5.3), one way of investigating how much we have managed
to say about an intended structure is to look at what unintended interpretations are
still compatible with what we have said so far.

We use language to talk about things like numbers, buildings, or people. But we can
also use language to talk about language—as we have been doing in this chapter.
Talking about language is also something we want to talk about! So it will be usful
to introduce another little formal language. This is a little sketch of the way we use
strings of symbols to talk about strings of symbols—a language about languages.

3.1.6 Definition
The signature of the language of strings, abbreviated 𝐿𝕊, has a two-place func-
tion symbol ⊕, a two-place predicate ≲ (which we will use for the no-longer-than
relation), a name "" (which will represent the empty string), and a name for the
singleton string for each symbol in the standard alphabet 𝔸. We’ll use quotation
marks for these symbol-names. The name for the singleton string A will be "A", the
name for B will be "B", and so on. There are a few exceptions to this pattern.

• It would be confusing and potentially ambiguous to use """ as the name for
the quotation mark ". So we’ll use quo, instead.

• To guarantee unique parses (Section 3.3), it’s convenient to stick to names
that don’t include any commas or parentheses. But that means we can’t use
"," as a name for the comma ,. Instead, we’ll use com for the comma, lpa
for (and rpa for), instead of the more obvious ",", "(", and ")".

114 CHAPTER 3. TERMS

• In Section 4.1, Chapter 7, and Chapter 8 it will sometimes be convenient to
use multi-line strings, particularly to write down programs and proofs. For
this purpose, we have a symbol in our alphabet that represents the start of a
new line—called newline. This symbol is difficult to write down on its own.
Our name for the newline symbol in the language of strings is new.

In general, we will use the notation 𝑐𝑎 for the name in 𝐿𝕊 for the symbol 𝑎 ∈ 𝔸.
For example, 𝑐A = "A", and 𝑐" = quo.

(Why the weird abbreviations for these names? It turns out that making all of the
names for single symbols the same length is a useful hack later on, in Section 6.3.)

(The language of arithmetic 𝐿ℕ and the language of strings 𝐿𝕊 both have finite
signatures. That is, each of these signatures has only finitely many names, function
symbols, and predicates. In general, a signature doesn’t have to be finite, but the
ones we will be focusing on in this text are.)

3.1.7 Definition
The standard string structure 𝕊 is a structure whose signature is 𝐿𝕊 (Defini-
tion 3.1.6).

• Its domain is the set of all strings (which we also called 𝕊). The extension of
the name "" is the empty string.

• For each symbol 𝑎 in the standard alphabet 𝔸, its corresponding name 𝑐𝑎 has
as its extension the singleton string of just 𝑎. (For example, the extension of
the name "A" is the singleton string A, and the extension of the name quo is
the singleton string ".)

• The extension of the function symbol ⊕ is the function ⊕ that joins two strings
together.

• The extension of the predicate ≲ is the set of pairs of strings (𝑠, 𝑡) such that
length 𝑠 ≤ length 𝑡.

More briefly:

𝐷𝕊 = 𝕊
[⊕]𝕊(𝑠, 𝑡) = 𝑠 ⊕ 𝑡 for each 𝑠, 𝑡 ∈ 𝕊

[≲]𝕊 = {(𝑠, 𝑡) ∣ length 𝑠 ≤ length 𝑡}
[""]𝕊 = () (that is, the empty string)[𝑐𝑎]𝕊 = (𝑎) for every 𝑎 ∈ 𝔸

3.2. SYNTAX AND SEMANTICS 115

Here 𝑐𝑎 is the name for the symbol 𝑎 in 𝐿𝕊. (For example, ["A"]𝕊 = A, and [quo]𝕊 =
".)

We need to be careful about use and mention. The word Obama is a different thing
from the former president Obama, and the string 0 is a different thing from the
number 0. The same goes for words in the language of strings, but now we need to
be extra careful, because strings are not only the things we are using as names, but
also the things that these names stand for. For example, "A" and A are both strings,
but they are not the same string. The string "A" is a name in the name of strings.
The string A is not a name in that language, though—it is the string that "A" is a
name for. Even when we are naming parts of language—indeed, even when we are
naming names!—it is important to keep track of the difference between names and
what is named.

3.1.8 Exercise
Let 𝐿 be the signature that includes one name bar, and one one-place function
symbol foo. Give an example of an 𝐿-structure with an infinite domain, and an
example of an 𝐿-structure with a finite domain. What is the smallest domain an
𝐿-structure can have?

3.2 Syntax and Semantics

“Were the Lord of Wey to turn the administration of
his state over to you, what would be your first
priority?” asked Zilu.
“Without question it would be to ensure that names
are used properly”, replied the Master.

Confucius (551?–479? BCE), Analects

A signature is a very simple kind of language. It is basically just a “bag of words”,
without any glue that holds different words together. We’ll now take a step to a
slightly more complicated language. We can put basic symbols together to build
up complex expressions—this is called syntax. And there are rules for how these
complex expressions can also stand for things in the world—this is called semantics.

A signature gives us some basic symbols for picking out features of interest. Take
the standard model of arithmetic ℕ(0, suc, +, ·, ≤) as an example: we have a label
for zero, and a label for the successor function. But once we have these, we can
put them together to pick out other numbers as well. We know that the number

116 CHAPTER 3. TERMS

one is suc 0, so we can use the expression suc 0 to pick it out. Similarly, we can
use suc suc 0 to stand for the number two, and so on. Here suc 0 is a complex
term, built out of two basic expressions suc and 0. The things we get by putting
these symbols together like this are called numerals: they are names or labels for
numbers. The numerals are these expressions:

0, suc 0, suc suc 0, suc suc suc 0, …

We can also describe a number in other ways: for example, the number two isn’t
just suc suc 0, but it’s also (suc 0) + (suc 0) (that is, 1 + 1). We also have + in the
language of arithmetic, so we can also build up the expression (suc 0) + (suc 0)
as an alternative way to refer to the number two. In general we can build up arbi-
trarily complicated terms by putting these names and function symbols together in
different ways.

(Predicates do not ever appear in terms. We will set them aside for a while, and
bring them back in Chapter 5.)

Hopefully that gets across the intuitive idea of what a term for a certain signature
is. The next thing we’ll do is give a more precise description of terms.

In the language of arithmetic, one term is suc suc 0 · (suc 0 + suc 0). We
can visualize its structure as in (Fig. 3.1). This has the form of a labeled tree, where
each node of the tree is labeled with some symbol in the language of arithmetic. The
key idea here is that every term can be represented by a syntax tree like this, and in
exactly one way.

·

+

suc

0

suc

0

suc

suc

0

Figure 3.1: The syntactic structure of a term, as a labeled tree.

Another way of representing the same structure is with a syntax derivation, which
shows how each stage is built up using one of the basic symbols.

3.2. SYNTAX AND SEMANTICS 117

0

suc 0

suc suc 0

0

suc 0

0

suc 0

suc 0 + suc 0

suc suc 0 ⋅ (suc 0 + suc 0)

We can think of a derivation as a complex argument, consisting of statements of
the form “𝑎 is a term”, where each step of the argument follows from some basic
formation rule for building up terms.

We can define the terms in the language of arithmetic recursively. These are the
rules for putting together terms in the language of arithmetic.

0 is a term
𝑡 is a term

suc 𝑡 is a term

𝑡1 is a term 𝑡2 is a term
(𝑡1 + 𝑡2) is a term

𝑡1 is a term 𝑡2 is a term
(𝑡1 ⋅ 𝑡2) is a term

Just as in Section 2.2, each rule means that, given the facts written above the line,
we can derive the fact written below the line.

Let’s state this idea more abstractly, not just for the language of arithmetic, but
for an arbitrary signature. Before we do this, though, we should talk about some
notational issues. In practice, we write down function symbols in several different
styles. Some function symbols, like + and ⋅, look best in between the two things they
apply to (“infix” notation). Other function symbols, like suc or f, look best in front
of them (“prefix” notation). In practice, we use both notations, depending on which
one is more convenient. But when we give an official definition of the syntax of a
formal language, it’s a nuisance to keep track of two different ways of writing things
down, and this would add annoying and useless complications to our proofs. So we
won’t do that. Instead, we’ll make one official choice. Because it happens to be a
little less cumbersome in general, our official choice will be “prefix” notation: we’ll
write two-place function terms like f(x, y), rather than like (x f y). Officially,
we’ll apply this convention to all function terms, even + and ⋅ and ⊕. So when we’re
being totally official, the terms of the language of arithmetic will look like +(0,0),
rather than (0 + 0). But we will almost never bother being totally official. In
practice, we can freely write our terms whichever way is most convenient, trusting

118 CHAPTER 3. TERMS

that this won’t lead to confusion. (It isn’t as if there is some other term that you
might plausibly mean by (0 + 0).)

There are similar issues that come up with parentheses and spaces. Again, our offi-
cial definition of terms is going to commit us to one particular choice of where to
put parentheses and spaces. Our official choices are mainly driven by the goal of
keeping things simple in the general case. But in practice, things often look better
and are clearer to human readers if we leave out parentheses that are officially called
for (as long as this doesn’t make things ambiguous), and put in extra spaces. Com-
puter programs might make a fuss over this, but since we’re all humans it shouldn’t
make too much trouble.

That means that often when we write down a term—for example, as suc 0 + 0—
officially we are really talking about a different, closely related string—in this case,
+(suc(0),0). In practice, this shouldn’t really be a big deal. (There will be other
notational issues like this that come up from time to time.)

3.2.1 Definition
Let 𝐿 be a signature. The 𝐿-terms are defined recursively by the following rules:

𝑐 is a name in 𝐿
𝑐 is an 𝐿-term

𝑓 is an 𝑛-place function symbol in 𝐿 𝑡1 is an 𝐿-term … 𝑡𝑛 is an 𝐿-term
𝑓(𝑡1,…,𝑡𝑛) is an 𝐿-term

To be totally explicit: if we have an 𝑛-place function symbol and 𝑛 terms, then we
can form a new term by putting together first 𝑓 , then an open parenthesis (, then
all of the terms, one after another, separated by commas ,, and finally a closing
parenthesis).

We will also use the notation 𝕋𝐿 for the set of all 𝐿-terms. We leave off the 𝐿
subscript when it is clear in context.

Let’s pause here on a philosophical question. Our definition says that terms are
certain strings. But is that really what terms are? This is similar to some ques-
tions that came up earlier: whether sequences are really functions from numbers,
whether functions are really sets of ordered pairs, or whether ordered pairs are re-
ally certain sets. There are some reasons to think that the answer is no. After all,
we had to make some arbitrary notational choices in order to decide which string

3.2. SYNTAX AND SEMANTICS 119

was the term (0 + 0) (that is, officially, +(0,0)). The nature of the term—which
basic symbols are put together in what syntactic structure—doesn’t seem tied to
one notation or another. We could have used (+ 0 0) or any other unambiguous
notational system to write down the same term. But it will make things harder for
us down the road if we are always distinguishing between a term and its (somewhat
arbitrary) string representation in a certain system of notation. So we will proceed
as if the philosophical myth were true, that terms (and syntactic structures more
generally) just are strings.

The important thing about terms is not the notational details of how specific symbols
are put together. The important thing is more structural: each term can be put
together out of names and function symbols, in just one way. An important thing
for us to check is that our official system of notation really does have this structural
feature—so these strings can at least play the role of terms.

As with numbers and strings, the important structural features of terms can be
spelled out in two parts: an Inductive Property and an Injective Property. Intu-
itively, the Inductive Property says that we can reach every term using these rules
in at least one way, and the Injective Property says that we can reach every term
using these rules in at most one way. Let’s take a closer look at each of these prop-
erties.

The Inductive Property for Terms follows directly from our recursive definition
(which is underlied by Exercise 2.3.2). This definition tells us that each of our
syntactic rules for forming terms takes you to an 𝐿-term, and it also tells us that
every 𝐿-term can be reached somehow or other by applying these rules. Practically
speaking, what this gives us is a new kind of inductive proof: induction on syntactic
structure. This is an extremely important tool in logic.

3.2.2 Technique (Induction on Terms)
Suppose that we want to show that every term is nice. We can do this in three steps.

1. Let 𝑐 be any name. Show that 𝑐 is nice.

2. Let 𝑓 be any 𝑛-place function symbol, and let 𝑡1, …, 𝑡𝑛 be terms. Suppose that
each of the terms 𝑡1, …, 𝑡𝑛 is nice. (This is the inductive hypothesis.) Then
show that the term 𝑓(𝑡1,…,𝑡𝑛) is also nice.

3.2.3 Example
For any signature 𝐿, every 𝐿-term contains at least one name as a substring.

120 CHAPTER 3. TERMS

Proof
The proof is by induction on the structure of terms. There are two parts to this
proof.

1. Let 𝑐 be a name (in 𝐿). Then it’s obvious that 𝑐 is a substring of itself.

2. Let 𝑓 be an 𝑛-place function symbol (in 𝐿), and let 𝑡1, …, 𝑡𝑛 be terms. Sup-
pose, for the inductive hypothesis, that 𝑡1 contains a name, 𝑡2 contains a name,
and so on up to 𝑡𝑛. Then clearly 𝑓(𝑡1,…,𝑡𝑛) also contains whatever names
appear in 𝑡1, since it has 𝑡1 as a substring. □

3.2.4 Example
Say a string is balanced iff it includes the same number of left parentheses (as
right parentheses). Prove by induction that for any signature 𝐿, every 𝐿-term is
balanced.

Proof
Again our strategy is induction on 𝐿-terms.

1. Let 𝑐 be a name. Then 𝑐 is a token, which requires that it is a string that
does not contain any parentheses. So the number of left parentheses and the
number of right parentheses are both zero.

2. Let 𝑓 be an 𝑛-place function symbol, and let 𝑡1, …, 𝑡𝑛 be terms. For the
inductive hypothesis, we suppose that 𝑡𝑖 is balanced for each 𝑖 ∈ {1, …, 𝑛}.
For each 𝑖, let 𝑝𝑖 be the number of left parentheses in 𝑡𝑖, which is equal to the
number of right parentheses in 𝑡𝑖. Then the total number of left parentheses
in 𝑓(𝑡1,…,𝑡𝑛) is 1 + 𝑝1 + ⋯ + 𝑝𝑛. Similarly, the total number of right
parentheses is 𝑝1 + ⋯ + 𝑝𝑛 + 1. These numbers are equal, so 𝑓(𝑡1,…,𝑡𝑛) is
balanced.

That completes the inductive proof. □

After the Inductive Property, the second important thing about terms is that they
are not syntactically ambiguous. For example, you can’t have one term which is
both a name and also of the form 𝑓(𝑡) for some function symbol 𝑓 and term 𝑡. So
something we need to check, to make sure that our official definition of terms really
has the right structural features, is that the formation rules are unambiguous. Each
term should only be reached in one way using these rules. That means that terms
also have an Injective Property, analogous to the Injective Properties for numbers
and strings. This fact seems kind of obvious when you look at the definition: we’ve

3.2. SYNTAX AND SEMANTICS 121

inserted parentheses and commas between things, so you should always be able to
find those “delimiters” and use them to break up a term into parts in just one way.
But precisely stating this fact and officially proving it is surprisingly fiddly. The
Injective Property for Terms is spelled out and proved in Section 3.3. (This fact also
goes by other names, including the Parsing Theorem and the Unique Readability
Theorem.)

Because terms have both an inductive property and an injective property, this also
gives us an important new kind of recursive definition. Say we want to define a
function that assigns a value to every term. In order to define the value of the
function for a certain term, we can assume that we have already defined the function
for each of its subterms.

3.2.5 Example
Here’s an example of a recursively defined function: the complexity function,
which assigns a number to each term. The idea is that the complexity of a term is
its total number of names and function symbols. (This is not the same as its length
as a string.) Here are some examples of some terms in the language of arithmetic
with their complexities.

0 ↦ 1
suc0 ↦ 2

suc0 + 0 ↦ 4
suc0 ⋅ (suc0 + 0) ↦ 7

Here is the recursive definition:

1. For each name 𝑐 in 𝐿,
complex 𝑐 = 1

2. For each 𝑛-place function symbol 𝑓 in 𝐿, and any terms 𝑡1, …, 𝑡𝑛,

complex(𝑓(𝑡1,…,𝑡𝑛)) = 1 + complex 𝑡1 + ⋯ + complex 𝑡𝑛

As usual, recursive definitions work hand in hand with inductive proofs.

3.2.6 Example
For any term 𝑡,

complex 𝑡 ≤ length 𝑡

Proof
We will prove this by induction on the structure of terms.

122 CHAPTER 3. TERMS

1. Let 𝑐 be any name. Then

complex 𝑐 = 1 ≤ length 𝑐

since the name 𝑐 is required to be a non-empty string.

2. Let 𝑓 be an 𝑛-place function symbol, and let 𝑡1, …, 𝑡𝑛 be any terms. Suppose
for the inductive hypothesis that for each 𝑖 ∈ {1, …, 𝑛},

complex 𝑡𝑖 ≤ length 𝑡𝑖

Then by definition,

complex(𝑓(𝑡1,…,𝑡𝑛)) = 1 + complex 𝑡1 + ⋯ + complex 𝑡𝑛
≤ 1 + length 𝑡1 + ⋯ + length 𝑡𝑛

using the inductive hypothesis. We can calculate the length of 𝑓(𝑡1,…,𝑡𝑛)
by adding up the lengths of each of its pieces, including the two parentheses
and the 𝑛 − 1 commas.

length(𝑓(𝑡1,…,𝑡𝑛)) = 𝑛 + 1 + length 𝑓 + length 𝑡1 + ⋯ + length 𝑡𝑛

This is clearly greater than the sum of the lengths of 𝑡1, …, 𝑡𝑛 plus one. So

complex(𝑓(𝑡1,…,𝑡𝑛)) ≤ length(𝑓(𝑡1,…,𝑡𝑛)) □

3.2.7 Technique (Recursively defining a function on terms)
Suppose we want to come up with a function 𝑟 whose domain is the set of all 𝐿-
terms. We can do this in two steps.

1. Fill in the blank:

For each name 𝑐 in 𝐿, 𝑟(𝑐) = ___________________

2. Fill in the blank:

For each 𝑛-place function symbol 𝑓 in 𝐿 and any 𝐿-terms
𝑡1, …, 𝑡𝑛,

𝑟(𝑓(𝑡1,…,𝑡𝑛)) = ___________________

This time, the description you write down can make reference to any or all of
the values 𝑟(𝑡1), …, 𝑟(𝑡𝑛).

3.2. SYNTAX AND SEMANTICS 123

3.2.8 Exercise
Let 𝐿 be a signature with one name bar and one two-place function symbol foo.
Consider the recursively defined function 𝑔:

𝑔(bar) = 2
𝑔(foo(𝑡1,𝑡2)) = 𝑔(𝑡1) + 𝑔(𝑡2) for any 𝐿-terms 𝑡1 and 𝑡2

Prove by induction that 𝑔(𝑡) is even for every 𝐿-term 𝑡.

3.2.9 Notation
We’ll be working with a lot of sequences, so it will be useful to have some slightly
cleaner notation for working with them. We’ll use the notation �̄� to stand for a
sequence (𝑥1, …, 𝑥𝑛). (Similarly, ̄𝑡 is the sequence (𝑡1, …, 𝑡𝑛), etc.) We’ll also abuse
notation a bit and write 𝑓(̄𝑡) as a shorthand for 𝑓(𝑡1,…,𝑡𝑛)—leaving the comma
separators implicit. So, for example, we can rewrite the last line of the solution to
Example 3.2.6 more simply like this:

complex(𝑓(̄𝑡)) ≤ length(𝑓(̄𝑡))

Another convenient shorthand will be to write down the rule for generating the
elements of a sequence, instead of writing out all of the elements one by one. We’ll
use the notation (…, 𝑥𝑖, …) for the sequence (𝑥1, …, 𝑥𝑛). (Here 𝑖 is an “iterator
variable”.) We can write (…, 𝑖, …) for the sequence (1, 2, …, 𝑛), or (…, 2𝑖, …) for
the sequence (2, 4, …, 2𝑛). We rely on context to tell us what 𝑛 should be.

Here’s another important example of a recursively defined function on terms. In
many ways, this is the most important example: it spells out how terms can be
meaningful. Terms stand for objects in structures. For example, in the standard
number structure, the term suc 0 + 0 stands for the number 1. The same term
can also stand for other things in other structures. What a term stands for depends
on how we interpret its basic symbols. For example, in the structure from Exam-
ple 3.1.5 which has Los Angeles buildings in its domain, the term suc 0 + 0 stands
for the Natural History Museum.

If we have an 𝐿-structure𝑆, thenwe canmap each𝐿-term to the object in 𝑆 which it
is supposed to stand for. In general, each term denotes some object in𝑆. Remember
that a structure 𝑆 provides some important information. For each name, 𝑆 gives us
an extension [𝑐]𝑆 , which is a certain object in the domain of 𝑆. For each function
symbol 𝑓 , 𝑆 gives us an extension [𝑓]𝑆 , which is a certain function from sequences
of objects in the domain to other objects in the domain. Wewill use these extensions

124 CHAPTER 3. TERMS

for the primitive symbols to build up the denotations of complex terms. The idea is
that we start from the extensions of names, and then put things together by applying
the extension of each function symbol in the term step by step.

3.2.10 Definition
Let 𝐿 be a signature, and let 𝑆 be an 𝐿-structure. The denotation of an 𝐿-term is
defined recursively as follows.

1. Each name 𝑐 denotes [𝑐]𝑆 .

2. Let 𝑓 be an 𝑛-place function symbol, let ̄𝑡 be an 𝑛-tuple of terms, and let ̄𝑑
be an 𝑛-tuple of elements of the domain 𝐷𝑆 . Suppose that 𝑡𝑖 denotes 𝑑𝑖, for
each 𝑖 ∈ {1, …, 𝑛}. Then the term 𝑓(̄𝑡) denotes the object [𝑓]𝑆(̄𝑑). This
is the result of applying the function which is the extension of 𝑓 in 𝑆 to the
𝑛-tuple (𝑑1, …, 𝑑𝑛).

The denotation of a term 𝑡 in a structure 𝑆 is written ⟦𝑡⟧𝑆 . Using this notation, we
can rewrite the recursive definition more concisely.

⟦𝑐⟧𝑆 = [𝑐]𝑆 for each name 𝑐 in 𝐿

⟦𝑓(̄𝑡)⟧𝑆 = [𝑓]𝑆(…, ⟦𝑡𝑖⟧𝑆 , …)
for each 𝑛-place function symbol 𝑓 in 𝐿
and any 𝑛-tuple of 𝐿-terms ̄𝑡

We can also write ⟦·⟧𝑆 for the denotation function, which takes each term to its
denotation in 𝑆. (The dot shows where to write the function’s argument.)

We’ll often leave off the 𝑆 subscripts from the denotation function to keep our
notation tidier, when it’s clear in context which structure we’re talking about.

3.2.11 Example
Use the definition of the denotation function to show that the term suc suc 0 + suc 0
denotes the number three, in the standard model of arithmetic ℕ. That is,

⟦suc suc0 + suc0⟧ℕ = 3

(In our totally official notation, this term would be written
+(suc(suc(0)),suc(0))

But you don’t have to bother with this, unless you really want to.)

3.2. SYNTAX AND SEMANTICS 125

Proof

⟦suc suc0 + suc0⟧
= ⟦suc suc 0⟧ + ⟦suc 0⟧ by the clause for the function symbol +
= suc⟦suc 0⟧ + suc⟦0⟧ by the suc clause (twice)
= suc suc⟦0⟧ + suc⟦0⟧ by the suc clause again
= suc suc 0 + suc 0 by the clause for the name 0
= 2 + 1 = 3 □

3.2.12 Exercise
Use the definition of the denotation function in the standard string structure 𝕊 to
show the following:

(a) The term ("" ⊕ "A") ⊕ "B" denotes the string AB in 𝕊. That is,

⟦("" ⊕ "A") ⊕ "B"⟧𝕊 = AB

(b) For any term 𝑡, the term 𝑡 ⊕ "" has the same denotation in 𝕊 as 𝑡. That is,

⟦𝑡 ⊕ ""⟧𝕊 = ⟦𝑡⟧𝕊

3.2.13 Definition
For each number, there is a corresponding term in the language of arithmetic, which
is called its numeral. The numeral for the number zero is the term 0, the numeral
for the number one is the term suc 0, the numeral for the number two is the term
suc suc 0, and so on. For a number 𝑛, we’ll call its numeral ⟨𝑛⟩. We can make
the definition of numerals explicit using a recursive definition—that is, a recursive
definition on numbers.

⟨0⟩ = 0

⟨suc 𝑛⟩ = suc ⟨𝑛⟩ for every 𝑛 ∈ ℕ

Use and mention can be a little confusing here, so I’ll spell it out. Notice that the 0
on the left side of the definition is the number zero, while the 0 on the right side is
a name in the language of arithmetic. Similarly the suc on the left side is a function
on numbers, while the suc on the right side is a one-place function symbol in the
language of arithmetic.

126 CHAPTER 3. TERMS

3.2.14 Exercise
(a) Prove by induction that for any number 𝑛, the numeral ⟨𝑛⟩ denotes the

number 𝑛, in the standard model of arithmetic. In short:

⟦⟨𝑛⟩⟧ℕ = 𝑛 for every 𝑛 ∈ ℕ

Hint. What kind of induction should you use?

(b) No two numbers have the same numeral. That is, for any numbers 𝑚 and
𝑛, if ⟨𝑚⟩ = ⟨𝑛⟩, then 𝑚 = 𝑛. In other words, the numeral function is
one-to-one.

Hint. Look back at how you proved that every function that has an inverse
is one-to-one, as one step of Exercise 1.2.22.

In our official language of arithmetic, we have adopted a very simple “unary” nota-
tion for numbers. There are other ways of writing numbers down which are more
familiar, such as decimal notation:

0 ↦ 0

1 ↦ 1

2 ↦ 2

⋮
10 ↦ 10

11 ↦ 11

⋮

But while this notation is familiar, actually writing down the official rules for this
system of notation is quite a bit trickier than our simple system. Other notational
systems, like Roman numerals, are even more complicated. For our official pur-
poses, it’s helpful to keep things as simple as we can.

3.2.15 Definition
We’ll call an 𝐿-structure explicit iff every element of its domain is denoted by some
𝐿-term.

Exercise 3.2.14 showed that the standard model of arithmetic ℕ is an explicit struc-
ture.

3.3. PARSING TERMS* 127

3.2.16 Exercise
(a) Give an example of a structure which is not explicit.

(b) Show that the string structure 𝕊 is explicit, by recursively defining a func-
tion that takes each string 𝑠 ∈ 𝕊 to some term ⟨𝑠⟩ in the standard language
of strings such that ⟦⟨𝑠⟩⟧𝕊 = 𝑠 (as in Exercise 3.2.14).

3.3 Parsing Terms*

Figure 3.2: Randall Munroe, xkcd. https://xkcd.com/327/

At this point we have worked through some examples of inductive proofs and re-
cursive definitions for terms. These practical tools are the most important thing to
understand about terms. But it’s also worthwhile to understand the foundations on
which these tools based.

The crucial property of terms is that every term can be built up from basic names
and function symbols in exactly one way. As with numbers and strings, we can split
that property up into two properties. The Inductive Property says that every term
can be built up in at least one way using these rules. The Injective Property says
that no term can be built up in two different ways using these rules. In this section,
first we’ll state these properties more carefully. Next, we’ll see how they can be
proved.

The idea of the Inductive Property for terms is very similar to our official Inductive
Properties for numbers and strings. It is a version of the kind of inductive property
for recursively defined sets in Section 2.2. There are certain rules for building up
terms: the rules for names and function symbols. The idea of the Inductive Property
is that every term can be reached in at least one way using these rules. This means
that any set that includes everything you eventually reach by applying these rules
includes every term.

https://xkcd.com/327/

128 CHAPTER 3. TERMS

Say you have a set 𝑋, and you want to prove by induction that every term is in 𝑋.
You would have to show two things:

1. Every name is in 𝑋.
2. For any 𝑛-place function symbol 𝑓 and any 𝑡1, 𝑡2, …, 𝑡𝑛 ∈ 𝑋, we also have

𝑓(̄𝑡) in 𝑋.

Call a set like this 𝐿-closed. What it means to say that proof by induction works is
that, if 𝑋 has these three properties, then 𝑋 contains every term.

(In fact, this is an application of the definition of “𝐹 -closed” in Definition 2.3.1 to
certain operations for joining together strings.)

3.3.1 Inductive Property for Terms
Let 𝐿 be a signature. For any 𝐿-closed set 𝑋, we have 𝕋𝐿 ⊆ 𝑋.

This fact immediately follows from the recursive definition of terms, using Exer-
cise 2.3.2.

The Inductive Property means that every term can be formed in at least one way
using the formation rules for names and function symbols. The other thing to check
is that each term can be formed in at most one way from these rules: that is, no two
different formation rules ever give the same result. This amounts to the fact that
our system of notation does not have any syntactic ambiguity. (It is also called the
Unique Readability Theorem, or the Parsing Theorem.) This is rather complicated
to state.

3.3.2 Injective Property for Terms
Let 𝐿 be a signature.

(a) 𝑐 and 𝑓(̄𝑡) are distinct from one another, for any name 𝑐, 𝑛-place function
symbol 𝑓 , and 𝑛-tuple of terms ̄𝑡.

(b) For any 𝑛-place function symbol 𝑓 and 𝑛-tuple of terms ̄𝑡, and any 𝑚-place
function symbol 𝑔 and 𝑚-tuple of terms ̄𝑢, if 𝑓(̄𝑡) is the same as 𝑔(̄𝑢), then
𝑛 = 𝑚, 𝑓 = 𝑔, and ̄𝑡 = ̄𝑢.

Like the Injective Properties for numbers and sequences, we can state this more
elegantly in terms of functions. If 𝐿 is a signature, let 𝐿0 be its set of names, and
for each 𝑛 > 0 let 𝐿𝑛 be the set of 𝑛-place function symbols. (We can think of
names as “zero-place function symbols”.) Let 𝕋𝐿 be the set of all 𝐿-terms. We will
drop the 𝐿 subscript when it is clear in context. Consider these “term-constructing”

3.3. PARSING TERMS* 129

functions:

• con0 ∶ 𝐿0 → 𝕋 takes each name to itself;
• con𝑛 ∶ 𝐿𝑛 × 𝕋 𝑛 → 𝕋 takes each pair of an 𝑛-place function symbol 𝑓 and an

𝑛-tuple of terms ̄𝑡 to the term 𝑓(̄𝑡);
Then we can more succinctly restate the Injective Property like this:

Each of the term-forming functions con0, con1, con2, … is one-to-one,
and their ranges have no elements in common.

We can go a bit further, making this even more elegant and abstract, by combining
all three of these term-builders into one big function. First, let

𝐿(𝕋) = 𝐿0 ∪ (𝐿1 × 𝕋 1) ∪ (𝐿2 × 𝕋 2) ∪ ⋯

This is the set of basic term-constructors—all of the different ingredients we can
use to build a term: this can be a name, a one-place function symbol and one term,
or a two-place function symbol and two terms, and so on. �hen we define the term-
constructing function con ∶ 𝐿(𝕋) → 𝕋 such that

con(𝑐) = con0(𝑐) = 𝑐 for 𝑐 ∈ 𝐿0
con(𝑓 , ̄𝑡) = con𝑛(𝑓 , ̄𝑡) = 𝑓(̄𝑡) for 𝑓 ∈ 𝐿𝑛 and ̄𝑡 ∈ 𝕋 𝑛

Then this is an even more concise way to state the Injective Property:

The term-building function con ∶ 𝐿(𝕋) → 𝕋 is one-to-one.

3.3.3 Exercise
Show that the function con ∶ 𝐿(𝕋) → 𝕋 is onto.

Hint. The induction argument is almost too straightforward.

Before we work on proving the Injective Property, remember that there are rules
for what strings are allowed to be used as names or function symbols. If you chose
something perverse like suc(x) or),(as one of your basic names, you really could
get ambiguities. (This is the idea behindmany computer viruses, which deliberately
try to trick programs into accepting “control” code as ordinary input data.) To avoid
this, we say that you aren’t allowed to use any parentheses or commas in your names
or function symbols.

3.3.4 Definition
(a) A symbol is a delimiter iff it is one of ,, (, or).

(b) A string is a token iff it is non-empty and does not contain any delimiters.

130 CHAPTER 3. TERMS

Here is a basic fact to get us started. Consider the term suc(+(0,0)) (written in
official “prefix” notation). In order to break this down, the first thing we need to
notice is that it starts with the function symbol suc. This is the initial token of the
string. It’s important that each string has a unique initial token. That is, if we take a
token and stick a delimited string onto the end of it, we can always figure out what
the original token was.

Let’s recall some basic facts about strings (TODO CROSS-REF):

3.3.5 Proposition
For any strings 𝑠, 𝑡, 𝑡′ ∈ 𝕊:

(a) 𝑠 is an initial substring of 𝑡 iff 𝑠 ⊕ 𝑠′ = 𝑡 for some string 𝑠′ ∈ 𝕊. If 𝑠 is an
initial substring of 𝑡, and 𝑡 is an initial substring of 𝑠, then 𝑠 = 𝑡.

(b) Cancellation. If 𝑠 ⊕ 𝑡 = 𝑠 ⊕ 𝑡′, then 𝑡 = 𝑡′.

(c) Strong Inductive Property (The Shortest String Property). Let 𝑋 be a set
of strings. Suppose that, for every string 𝑠 ∈ 𝕊, if every string shorter than 𝑠
is in 𝑋, then 𝑠 ∈ 𝑋 as well. It follows that every string is in 𝑋.

3.3.6 Definition
A string 𝑠 is a delimited initial substring of a string 𝑡 iff either 𝑠 = 𝑡, or else for
some delimiter 𝑑, 𝑠 ⊕ (𝑑) is an initial substring of 𝑡. If 𝑠 is also a token, then we
call 𝑠 the initial token of 𝑡.

3.3.7 Lemma
Every string has at most one initial token.

Proof
Suppose that for some tokens 𝑐 and 𝑐′ and delimited strings 𝑠 and 𝑠′, 𝑐 ⊕𝑠 = 𝑐′ ⊕𝑠′.
If 𝑠 is empty, then 𝑐 ⊕ 𝑠 = 𝑐, so 𝑐′ is an initial substring of 𝑐. Otherwise, 𝑠 begins
with a delimiter, and 𝑐′ does not contain any delimiters. So in this case too, 𝑐′ is
an initial substring of 𝑐.
By parallel reasoning, 𝑐 must also be an initial substring of 𝑐′. So 𝑐 = 𝑐′. □

This means that if we have a term, we can figure out what kind of term it is, by
identifying its initial token, and whether this is a name or a function symbol.

3.3.8 Exercise
(a) Prove that con0 is one-to-one.

3.3. PARSING TERMS* 131

(b) Prove that the ranges of con0, con1, con2, … have no elements in common.
(c) Prove more generally that if con𝑚(𝑓 , ̄𝑡) and con𝑛(𝑔, ̄𝑢) are both delimited

initial substrings of 𝑠, then 𝑚 = 𝑛 and 𝑓 = 𝑔.

That’s a good start, but we’re not quite done. The last thing we need to show is that
each of the functions con𝑛 is one-to-one (for 𝑛 > 0). To do this, we need to take a
term 𝑓(𝑡1,…,𝑡𝑛) and work out its component parts. But we can’t just look for the
first comma and declare everything in front of that to be the first argument of the
function symbol. The terms 𝑡𝑖 might include commas themselves. So in order to
break up this term we need to figure out which commas are the “right” ones, which
go along with the outermost function symbol. To do that, we need to figure out how
much of the string after the first parenthesis goes with 𝑡1, and then how much goes
with 𝑡2, and so on.

3.3.9 Lemma
For each string 𝑠, there is at most one 𝑥 ∈ 𝐿(𝕋) such that con(𝑥) is a delimited
initial substring of 𝑠.

Proof
Call a string with this property parseable. We will use the Shortest String Property
prove that every string is parseable.

Suppose that every string shorter than 𝑠 is parseable, let 𝑥, 𝑥′ ∈ 𝐿(𝕋), and suppose
that con(𝑥) and con(𝑥′) are both delimited initial substrings of 𝑠.

There are two cases to consider for 𝑥.

1. Suppose that 𝑥 = 𝑐 for some name 𝑐. Then 𝑐 is the initial token of 𝑠. There
are also two cases for 𝑥′.

(a) If 𝑥′ is also a name 𝑐′, then 𝑐′ is also the initial token of 𝑠, so we must
have 𝑐 = 𝑐′ by Lemma 3.3.7.

(b) Otherwise, 𝑥′ is (𝑓 , ̄𝑡) for some function symbol 𝑓 . Then we would
also have 𝑓 as the initial token of 𝑠, which would imply 𝑐 = 𝑓 (by
Lemma 3.3.7 again). But in a signature the set of names 𝐿0 has no
elements in common with the set of function symbols 𝐿𝑛, so this can’t
happen.

2. Otherwise 𝑥 = (𝑓 , ̄𝑡) for some 𝑓 ∈ 𝐿𝑛 and ̄𝑡 ∈ 𝕋 𝑛. Again we have two cases
for 𝑥′.

(a) 𝑥′ can’t be a name, by the same reasoning as case 1(b).

132 CHAPTER 3. TERMS

(b) So 𝑥′ = (𝑔, ̄𝑢) for some 𝑔 ∈ 𝐿𝑚 and ̄𝑢 ∈ 𝕋 𝑚. In this case, again, 𝑓 and
𝑔 are both the initial token of 𝑠, so 𝑓 = 𝑔. So the adicity 𝑚 = 𝑛 as well.
Now we just need to show that ̄𝑡 = ̄𝑢. We will prove this by (strong)
induction.

Let 𝑘 ∈ {1, …, 𝑛}, and suppose for the inductive hypothesis that 𝑡𝑖 = 𝑢𝑖
for each 𝑖 < 𝑘. We know that 𝑓(̄𝑡) and 𝑔(̄𝑢) are both initial substrings
of 𝑠, which implies that there are strings 𝑠′ and 𝑠″ such that

𝑠 = f(𝑡1,…,𝑡𝑘−1,𝑡𝑘,𝑠′

𝑠 = g(𝑢1,…,𝑢𝑘−1,𝑢𝑘,𝑠″

Furthermore, the part of the first string up to 𝑡𝑘 is identical to the part
of the second string up to 𝑢𝑘. So by the Cancellation Property,

𝑡𝑘 ⊕ , ⊕ 𝑠′ = 𝑢𝑘 ⊕ , ⊕ 𝑠′

Furthemore, since con is onto this implies that there are 𝑦, 𝑧 ∈ 𝐿(𝕋)
such that

𝑡𝑘 = con 𝑦 𝑢𝑘 = con 𝑧
This means that con 𝑥 and con 𝑦 are both delimited initial substrings of
a string that is shorter than 𝑠. But the “outer” inductive hypothesis tells
us that this implies that 𝑥 = 𝑦. So 𝑡𝑘 = 𝑢𝑘.

By induction, 𝑡𝑘 = 𝑢𝑘 for every 𝑘 ∈ {1, …, 𝑛}. Thus 𝑓 = 𝑔 and ̄𝑡 = ̄𝑢,
which completes the proof.

Thus every string is parseable. □

3.3.10 Exercise
Use Lemma 3.3.9 to finish the proof of the Injective Property for terms.

Here is one more thing to notice about what we have done. For each constant 𝑐, we
have a certain term—namely, 𝑐 itself. And for each function symbol 𝑓 , we have
a way of mapping each sequence of terms ̄𝑡 ∈ 𝕋 𝑛 to another term, 𝑓(̄𝑡). That is,
each constant 𝑐 has a corresponding element of 𝕋 , and each function symbol 𝑓 has
a corresponding function from 𝕋 𝑛 to 𝕋 . What we have described here is a structure.

3.3.11 Definition
For a signature 𝐿, the term structure is the following 𝐿-structure, which we also
call 𝕋𝐿. (We leave off the 𝐿 subscript when it is clear in context). The domain of

3.4. RECURSION FOR TERMS* 133

𝕋𝐿 is the set of all 𝐿-terms. The extensions in 𝕋𝐿 correspond to the various ways
of constructing terms:

[𝑐]𝕋 = con 𝑐 = 𝑐 for each 𝑐 ∈ 𝐿0
[𝑓]𝕋 (̄𝑡) = con(𝑓 , ̄𝑡) = 𝑓(̄𝑡) for each 𝑓 ∈ 𝐿𝑛, ̄𝑡 ∈ 𝕋 𝑛

As we will see in the next section, term structures are particularly special
𝐿-structures.

3.4 Recursion for Terms*

In Section 3.2 we saw some examples of functions which are defined recursively
using the syntactic structure of terms, like the complexity function and the denota-
tion function. This is analogous to recursive definitions for numbers and sequences.
Just like those kinds of recursive definition, recursive definitions for terms are based
on a general Recursion Theorem. Intuitively, what this theorem says is just that re-
cursive definitions work: that is, if you write down a recursive definition, you will
have successfully described one and only one function defined for every term. This
theorem a bit tricky to state in general, because the structure of terms is a bit more
complicated than the structure of numbers. But it works very similarly. In fact, we
will go on to show that recursion and induction for terms is a generalization of other
kinds of induction and recursion, including for numbers and terms.

Say we are writing down a recursive definition of a function from terms to a set 𝐴.
First, write down some value for each name. Abstractly, we can represent this part
of the definition as a function 𝑠0 from 𝐿0 (the set of names in 𝐿) to 𝐴. Second, we
write down some “recursive step” rule 𝑠𝑛 that takes each 𝑛-place function symbol
𝑓 , together with a value for each of its 𝑛 arguments, and gives us an element of 𝐴.
Abstractly, we can represent this as another function, this time 𝑠𝑛 ∶ 𝐿𝑛 × 𝐴𝑛 → 𝐴.
We take an 𝑛-place function symbol and an 𝑛-tuple of values in 𝐴, and then get a
new value in 𝐴.

This is now looking a lot like the way we formulated the Injective Property for
Terms. There, we considered the term-constructing functions

con0 ∶ 𝐿0 → 𝕋
con𝑛 ∶ 𝐿𝑛 × 𝕋 𝑛 → 𝕋

A recursive definition on terms specifies a rule corresponding to each way of con-

134 CHAPTER 3. TERMS

structing a term. These are represented by functions:

𝑠0 ∶ 𝐿0 → 𝐴
𝑠𝑛 ∶ 𝐿𝑛 × 𝐴𝑛 → 𝐴

What does it mean for rules like these to recursively define a function 𝑟? We want
𝑠0 to give us the values of 𝑓 for names:

𝑟(𝑐) = 𝑠0(𝑐) for every 𝑐 ∈ 𝐿0

And, given a function symbol 𝑓 and the values 𝑟(𝑡1), …, 𝑟(𝑡𝑛), we want the “recur-
sive step function” 𝑠𝑛 to give us the value for con(𝑓 , ̄𝑡) = 𝑓(̄𝑡):

𝑟(𝑓(̄𝑡)) = 𝑠𝑛(𝑓 , (…, 𝑟(𝑡𝑖), …)) for every 𝑓 ∈ 𝐿𝑛, ̄𝑡 ∈ 𝕋 𝑛

So this is what the Recursion Theorem for Terms says.

3.4.1 The Recursion Theorem for Terms
Let 𝕋 be the set of 𝐿-terms, and let 𝐴 be any set. For any “step” functions

𝑠0 ∶ 𝐿0 → 𝐴
𝑠𝑛 ∶ 𝐿𝑛 × 𝐴𝑛 → 𝐴

there is exactly one “recursive” function 𝑟 ∶ 𝕋 → 𝐴 such that

𝑟(con 𝑐) = 𝑠0(𝑐) for each 𝑐 ∈ 𝐿0
𝑟(con(𝑓 , ̄𝑡)) = 𝑠𝑛(𝑓 , (…, 𝑟(𝑡𝑖), …)) for each 𝑓 ∈ 𝐿𝑛, ̄𝑡 ∈ 𝕋 𝑛

Here is an alternative way of thinking about this. We already saw that the term-
constructor functions make the set of terms into a structure 𝕋𝐿. Things go the same
way with the “step” functions. Each 𝑠0 associates each constant with an element of
𝐴, and 𝑠𝑛 associates each function symbol with an 𝑛-place function from 𝐴 to itself.
So the step functions in a recursive definition turn the set 𝐴 into a structure, too.

There is also a nice way of describing the recursively-defined relationship between
these two structures.

3.4.2 Definition
Let 𝐿 be a signature without predicates, and let 𝑆 and 𝑇 be 𝐿-structures. A homo-
morphism from 𝑆 to 𝑇 is a function ℎ ∶ 𝐷𝑆 → 𝐷𝑇 from the domain of 𝑆 to the
domain of 𝑇 , such that

ℎ[𝑐]𝑆 = [𝑐]𝑇 for each 𝑐 ∈ 𝐿0
ℎ([𝑓]𝑆(̄𝑑)) = [𝑓]𝑇 (…, ℎ𝑑𝑖, …) for each 𝑓 ∈ 𝐿𝑛, ̄𝑑 ∈ 𝐷𝑛

𝑆

3.4. RECURSION FOR TERMS* 135

We also use the notation ℎ ∶ 𝑆 → 𝑇 to indicate that ℎ is a homomorphism from 𝑆
to 𝑇 .

A homomorphism is a kind of “structure-preserving map”.

We can use these ideas to restate the Recursion Theorem for Terms much more
elegantly.

3.4.3 The Recursion Theorem for Terms (Structure Version)
Let 𝕋𝐿 be the 𝐿-term structure. For any 𝐿-structure 𝑆, there is exactly one homo-
morphism 𝑟 ∶ 𝕋𝐿 → 𝑆.

3.4.4 Exercise
Check for yourself that the two formulations of the Recursion Theorem for Terms
are really equivalent.

There is a nice word for this feature of 𝕋𝐿 from the language of category theory: 𝕋𝐿
is a universal 𝐿-structure. In a sense, it is the “most general” 𝐿-structure.

Of course, anything can be restated very concisely if you just introduce complicated
enough definitions. The point of restating the Recursion Theorem this way is that
it uses notational tricks to hide away the messy details of constructing and parsing
terms, and puts out in the open the basic structure that makes the function 𝑟 recur-
sive. For in fact, all recursively defined functions—including those on numbers and
strings—can be understood this way.

Take numbers. Numbers are build up using a zero element and a successor func-
tion. So the “signature” of the inductive structure for numbers has one name and
one one-place function. Let 𝐿 be this signature (0, suc), and let ℕ𝐿 be the natural
number structure with signature 𝐿, where these each get their intended interpreta-
tion ([0]ℕ = 0 and [suc]ℕ = suc). A recursive definition of a function on numbers
tells you what to do with zero, and it tells you a rule for going from the value for
one number to the value for its successor. So a recursive definition also gives us a
structure with the same signature (0, suc). The extension of 0 is the starting value
for the function, and the extension of suc is the rule that takes you from the value
for one number to the value for its successor.

Then we can restate the Recursion Theorem for Numbers:

3.4.5 The Recursion Theorem for Numbers (Structure Version)
Let 𝐿 be the signature (0, suc), and let ℕ be the standard natural number 𝐿-structure.

136 CHAPTER 3. TERMS

For any 𝐿-structure 𝑆, there is exactly one homomorphism ℕ → 𝑆.

3.4.6 Exercise
Check that this is equivalent to the original Recursion Theorem for Numbers as
stated in Section 2.2.

The same goes for sequences. Let 𝐴 be any set. The set of sequences 𝐴∗ is built
up from the empty sequence and appending single elements. Accordingly, let 𝐿
be a signature which has a name empty for the empty sequence, and which has a
one-place function symbol for the “append 𝑎” function 𝑠 ↦ (𝑠, 𝑎), for each element
𝑎 ∈ 𝐴. (If 𝐴 is a big set, this signature has a lot of function symbols.)2 Then
there is an obvious way of turning 𝐴∗ into an 𝐿-structure. Furthermore, any recur-
sive definition of a function from sequences to a set 𝐵 effectively gives us a way
to turn 𝐵 into an 𝐿-structure, as well. We interpret empty as the value assigned
to the empty sequence, and we interpret the “append 𝑎” function symbol as the
corresponding rule in the recursive definition. So, once again, we can rewrite the
Recursion Theorem for Sequences:

3.4.7 The Recursion Theorem for Sequences (Structure Version)
Let 𝐿 be the signature with one name empty, and one function symbol 𝑓𝑎 for each
𝑎 ∈ 𝐴. Let 𝐴∗ be the structure whose domain is the set of sequences of elements
of 𝐴, where

[empty]𝐴∗ = ()
[𝑓𝑎]𝐴∗(𝑠) = (𝑠, 𝑎) for each 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝐴∗

For any 𝐿-structure 𝑆, there is a unique homomorphism 𝑟 ∶ 𝐴∗ → 𝑆.

We can also restate the Inductive and Injective Properties in a general way, in terms
of structures.

3.4.8 Definition
Let 𝐿 be a signature, and let 𝑆 be an 𝐿-structure.

(a) Call a set 𝑋 ⊆ 𝐷𝑆 𝐿-closed iff
2This is one place where it would be useful to relax our definition of “signature” to allow things

other than strings to serve as function symbols—for instance, the elements of 𝐴 themselves. Since
officially we haven’t allowed this, to be precise, the version of the Recursion Theorem for Sequences
stated here only works for sets 𝐴 where it is possible to assign a unique string token to each element
of 𝐴. As we will see in Section 4.1, this is the same as requiring that 𝐴 is a countable set. But that is
plenty for the purposes of this text.

3.4. RECURSION FOR TERMS* 137

(i) [𝑐]𝑆 ∈ 𝑋, and
(ii) for each 𝑓 ∈ 𝐿𝑛 and ̄𝑑 ∈ 𝑋𝑛, we also have [𝑓]𝑆(̄𝑑) ∈ 𝑋.

The structure 𝑆 is inductive iff every 𝐿-closed set 𝑋 contains every element
of the domain of 𝑆.

(b) For any set 𝑋, let 𝐿(𝑋) be the set3

𝐿0 ∪ 𝐿1 × 𝑋1 ∪ 𝐿2 × 𝑋2 ∪ ⋯

Define the function con𝑆 ∶ 𝐿(𝐷𝑆) → 𝐷𝑆 such that

con𝑆 𝑐 = [𝑐]𝑆 for each 𝑐 ∈ 𝐿0
con𝑆(𝑓 , ̄𝑑) = [𝑓]𝑆(̄𝑑) for each 𝑓 ∈ 𝐿𝑛 and ̄𝑑 ∈ 𝐷𝑛

𝑆

The structure 𝑆 is injective iff con𝑆 is a one-to-one function.

Notice how this generalizes the Inductive and Injective Properties for terms.

3.4.9 The General Recursion Theorem
Let 𝑆 be an inductive and injective 𝐿-structure. Then for any 𝐿-structure 𝑇 , there
is exactly one homomorphism 𝑟 ∶ 𝑆 → 𝑇 .

The proof of this general Recursion Theorem is structurally exactly parallel to the
proof of the Recursion Theorem for Numbers (2.3.4). It is just more abstract. We
will break it up into steps.

First we can recursively define a relation between the domains of 𝑆 and 𝑇 . Then
we will prove that it is a functional relation, and then that its corresponding function
is a homomorphism.

for each 𝑐 ∈ 𝐿0[𝑐]𝑆 selects [𝑐]𝑇

𝑎1 selects 𝑏1 … 𝑎𝑛 selects 𝑏𝑛 for each 𝑓 ∈ 𝐿𝑛, ̄𝑎 ∈ 𝐷𝑛
𝑆 , ̄𝑏 ∈ 𝐷𝑛

𝑇[𝑓]𝑆(̄𝑎) selects [𝑓]𝑆(�̄�)
3You might remember from algebra that a polynomial is a function of the form

𝑓(𝑥) = 𝑎0 + 𝑎1 ⋅ 𝑥1 + 𝑎2 ⋅ 𝑥2 + ⋯ + 𝑎𝑛 ⋅ 𝑥𝑛

for some numbers 𝑎0, …, 𝑎𝑛. By analogy, this operation that takes each set 𝑋 to a set 𝐿(𝑋) is called a
polynomial functor. (We can think of a union of two disjoint sets as “adding” the two sets together.)

138 CHAPTER 3. TERMS

For short, we will also say that a sequence ̄𝑎 ∈ 𝐷𝑛
𝑆 selects the sequence �̄� ∈ 𝐷𝑛

𝑇 iff
𝑎𝑖 selects 𝑏𝑖 for each 𝑖.

3.4.10 Exercise
Let ℎ ∶ 𝐷𝑆 → 𝐷𝑇 be a function. Suppose that for every 𝑎 ∈ 𝐷𝑆 , ℎ(𝑎) is the
unique 𝑏 ∈ 𝐷𝑇 such that 𝑎 selects 𝑏. Show that ℎ is a homomorphism.

3.4.11 Exercise
Let ℎ ∶ 𝑆 → 𝑇 be a homomorphism. Show that for every 𝑎 ∈ 𝐷𝑆 , 𝑎 selects
ℎ(𝑎).
Hint. Use the inductive property of 𝑆.

Next we will prove that the recursive definition of “selects” can also be run back-
wards, in a sense. This is straightforward, as long as we can keep all the pieces
straight.

3.4.12 Lemma
For any 𝑎 ∈ 𝐷𝑆 , 𝑏 ∈ 𝐷𝑇 such that 𝑎 selects 𝑏,

(a) For any 𝑐 ∈ 𝐿0, if 𝑎 = [𝑐]𝑆 , then 𝑏 = [𝑐]𝑇 , and

(b) For any 𝑓 ∈ 𝐿𝑛 and ̄𝑎 ∈ 𝐷𝑛
𝑆 , if 𝑎 = [𝑓]𝑆(̄𝑎), then there are ̄𝑏 ∈ 𝐷𝑛

𝑇 such that
𝑏 = [𝑓]𝑇 �̄� and ̄𝑎 selects ̄𝑏.

Proof
We prove this by induction on the definition of “selects”. There are two parts to the
proof.

1. First, we show that [𝑐]𝑆 and [𝑐]𝑇) have this property.

Part (a) is clear: by the injective property, if [𝑐]𝑆 = [𝑐′]𝑆 , then 𝑐 = 𝑐′, and
so [𝑐]𝑇 = [𝑐′]𝑇 as well.

Part (b) also follows from the injective property, since this implies that there
is no 𝑓 ∈ 𝐿𝑛 and ̄𝑎 ∈ 𝐷𝑛

𝑆 such that [𝑐]𝑆 = [𝑓]𝑆(̄𝑎).

2. Second, let 𝑓 ∈ 𝐿𝑛, ̄𝑎 ∈ 𝐷𝑛
𝑆 , and ̄𝑏 ∈ 𝐷𝑛

𝑇 , and suppose that ̄𝑎 selects ̄𝑏. We
will show that [𝑓]𝑆(̄𝑎) and [𝑓]𝑇 (�̄�) have the property.

For part (a), the injective property implies that there is no 𝑐 ∈ 𝐿0 such that
[𝑓]𝑆(̄𝑎) = [𝑐]𝑆 . So this part holds vacuously.

For part (b), the injective property implies that if [𝑓]𝑆(̄𝑎) = [𝑓 ′]𝑆(̄𝑎′), then

3.4. RECURSION FOR TERMS* 139

𝑓 = 𝑓 ′ and ̄𝑎 = ̄𝑎′. So [𝑓]𝑇 (�̄�) = [𝑓 ′]𝑆(�̄�), as well, and ̄𝑎 selects �̄�.
(We do not need to use the inductive hypothesis.) □

3.4.13 Lemma
For every 𝑎 ∈ 𝐷𝑆 there is exactly one 𝑏 ∈ 𝐷𝑇 such that 𝑎 selects 𝑏.

Proof
We can prove this using the inductive property of 𝑆. We need to show that the
extension of each constant has this property, and the extension of each function
symbol preserves the property.

1. Let 𝑐 ∈ 𝐿0. Then by definition [𝑐]𝑆 selects [𝑐]𝑇 . Furthermore, by the first
part, if [𝑐]𝑆 selects any 𝑏 ∈ 𝐷𝑇 , then 𝑏 = [𝑐]𝑇 . So [𝑐]𝑆 selects exactly one
value.

2. Let 𝑓 ∈ 𝐿𝑛, let ̄𝑎 ∈ 𝐷𝑛
𝑆 , and suppose for the inductive hypothesis that each

element of ̄𝑎 selects exactly one value. In other words, there is exactly one
̄𝑏 ∈ 𝐷𝑛

𝑇 such that ̄𝑎 selects �̄�.
Again by definition, [𝑓]𝑆(̄𝑎) selects [𝑓]𝑆(̄𝑏). Furthermore, for any 𝑏 ∈ 𝐷𝑇 ,
if [𝑓]𝑆(̄𝑎) selects 𝑏, then there is some ̄𝑏′ ∈ 𝐷𝑛

𝑇 such that ̄𝑎 selects ̄𝑏′ and
𝑏 = [𝑓]𝑆(̄𝑏′). By the uniqueness assumption in the inductive hypothesis, we
must have ̄𝑏 = ̄𝑏′. So [𝑓]𝑆(�̄�) is the unique value selected by [𝑓]𝑆(̄𝑎). □

This much proves that there is a unique function 𝑟 ∶ 𝐷𝑆 → 𝐷𝑇 such that, for every
𝑎 ∈ 𝐷𝑆 , 𝑎 selects 𝑟(𝑎).

3.4.14 Exercise
Put the pieces together to complete the proof of the General Recursion Theorem.

We can also go in the other direction, from the recursive property to the inductive
and injective properties.

3.4.15 Exercise
Let 𝑆 be an 𝐿-structure, and suppose that for every 𝐿-structure 𝑇 there is exactly
one homomorphism 𝑟 ∶ 𝑆 → 𝑇 .

(a) 𝑆 is injective.

(b) 𝑆 is inductive.

140 CHAPTER 3. TERMS

[TODO. Give some hints for this one.]

3.5 Variables

So far our term language is pretty limited. We can use it to label particular objects in
a structure—and that’s it. In this section we’ll extend our language to make it more
flexible, so we can also build up complex expressions that stand for functions, going
beyond just the basic function symbols. The key idea is to use symbols which don’t
have a fixed interpretation. They’re called variables, because their denotations can
vary within a single structure.

In the language of arithmetic, we can use suc 0 + suc suc 0 to label the number
three; and we can use + to label the addition function, or suc to label the successor
function. But how about the “add two” function?

[0 ↦ 2, 1 ↦ 3, 2 ↦ 4, …]

Or how about the doubling function?

[0 ↦ 0, 1 ↦ 2, 2 ↦ 4, …]

We can represent these functions using a language with variables. For instance,
the “add two” function can be represented by the term suc suc x. (“For each 𝑥,
take the successor of the successor of 𝑥.”) Similarly, the doubling function can be
represented by the term x · suc suc 0. (“For each 𝑥, multiply 𝑥 by 2.” Of course,
these aren’t the only options. We could also use x + suc suc 0 for the “add two”
function, or x + x for the doubling function.)

The free variable x works just like a name for some object, except we haven’t cho-
sen in advance which object it is supposed to stand for. It is an “arbitrary name”.
Introducing names like this is a move we often make in our informal proofs. We
can say things like
Let n be any number.

Before we said this, the symbol n may not have meant anything at all. After we say
it, though, we can use n as a term in just the same way we use other terms that stand
for numbers; just as we could write 3 + 2, and we can also write 3 + n. We have
effectively added n as a new word in our language.

We can do the same thing with our formal language. We can add a variable like x
to a signature alongside whatever other names we already have in our language—
say, the language of arithmetic. Applying the usual syntax rules to this expanded

3.5. VARIABLES 141

language, we get new terms like x + suc suc 0 that weren’t in the original lan-
guage.4

Now it makes sense to divide up a signature’s set of names into two categories:
constants—the original names—and variables—the new ones. Semantically, we
will hold the extensions of constants fixed, while letting the extensions of variables
vary. But the difference between constants and variables is all about what we do
with them, rather than how their syntax and semantics work.

3.5.1 Definition
Suppose that 𝐿 is a signature, and suppose 𝑥 is a variable which does not already
appear as a name in 𝐿. (We will generally keep this restriction implicit.) Let 𝐿(𝑥)
be the expanded signaturewhich has 𝑥 as a new name alongside the other symbols
in 𝐿.

If 𝑡 is an 𝐿(𝑥)-term, we also call 𝑡 an 𝐿-term of one variable. We’ll often use the
notation 𝑡(𝑥) to indicate that 𝑡 is an 𝐿(𝑥)-term. We’ll also write 𝕋𝐿(𝑥) an alternative
for 𝕋𝐿(𝑥), the set of all 𝐿(𝑥)-terms.

For example, if 𝐿ℕ is the language of arithmetic, then 𝐿ℕ(y) is the signature whose
set of names includes both 0 and y, andwhich has exactly the same function symbols
and predicates as the language of arithmetic (suc, +, ⋅, and ≤).

(If you’re watching very closely, you’ll notice that in Definition 3.5.1 I wrote 𝑥 rather
than x. That’s because this definition doesn’t just work for the specific variable x,
but also for any other variable, like y, z''', or awesome_variable. I used 𝑥 as a
metalanguage variable which ranges over arbitrary object language variables, such
as x, y, or z. If that seems confusing—it is a little bit, but don’t worry too much
and you’ll get the hang of it.)

Here’s a basic fact which is straightforward to prove by induction.

3.5.2 Example
For any signature 𝐿 and variable 𝑥, each 𝐿-term is also an 𝐿(𝑥)-term. (In short,
𝕋𝐿 ⊆ 𝕋𝐿(𝑥).)

Proof
By induction on 𝐿-terms.

4There are a variety of different ways of handling the semantics of variables which you’ll find in
different textbooks. We’ll use expanded structures in this book, but an alternative is to use what’s
called a variable assignment alongside the structure, or just a sequence of objects. The differences
between these approaches do not run very deep.

142 CHAPTER 3. TERMS

1. Let 𝑐 be any name in 𝐿. Then 𝑐 is also a name in 𝐿(𝑥), and thus an 𝐿(𝑥)-term.

2. Let 𝑓 be an 𝑛-place function symbol in 𝐿, and let ̄𝑡 be any 𝑛-tuple of 𝐿-terms.
For the inductive hypothesis, we suppose that 𝑡1, …, 𝑡𝑛 are each 𝐿(𝑥)-terms.
Then 𝑓(̄𝑡) is also an 𝐿(𝑥)-term by the definition of terms (Definition 3.2.1).

That’s all we have to show. □

3.5.3 Example
A variable is like a hole in a term. One useful thing to do is plug the hole up with
another term. Here are some examples of what happens when we plug the term
0 + 0 into the x-spot in various terms:

suc suc x ↦ suc suc (0 + 0)

x + suc x ↦ (0 + 0) + suc (0 + 0)

0 + suc0 ↦ 0 + suc0

We’ll now give a precise definition of the “plugging in” operation. Once again,
this definition is recursive. The intuitive idea is that whenever we meet a function
term like 𝑓(𝑡1,𝑡2), we just apply the substitution to each of its inner terms, until
eventually we reach the constants and variables. At this point, if it’s the variable we
want, then we replace it; otherwise we leave it alone.

3.5.4 Definition
Let 𝐿 be a signature, and let 𝑥 be a variable (not occurring in 𝐿). Let 𝑎 be an 𝐿-
term. For any 𝐿(𝑥)-term 𝑡(𝑥), we recursively define the substitution instance 𝑡(𝑎)
as follows.

1. For the variable 𝑥, the substitution instance 𝑥(𝑎) is just 𝑎.
2. For each 𝐿-name 𝑐, the substitution instance 𝑐(𝑎) is just 𝑐.
3. Let 𝑓 be an 𝑛-place function symbol, let (…, 𝑡𝑖(𝑥), …) be a sequence of 𝐿(𝑥)-

terms, and let 𝑢(𝑥) be the term 𝑓(…, 𝑡𝑖(𝑥), …). Then
𝑢(𝑎) = 𝑓(…, 𝑡𝑖(𝑎), …)

That is, first we replace each occurrence of 𝑥 with 𝑎 in 𝑡1(𝑥) to get 𝑡1(𝑎), and
then in 𝑡2(𝑥), and so on up to 𝑡𝑛(𝑥), and finally we construct a new function
term from the results (with appropriate punctuation).

In Section 3.2 we defined the denotation of a term in a structure: the object that
the term stands for in that structure. Our next job is to extend this definition to

3.5. VARIABLES 143

apply to terms with variables. But this time it’s a little trickier. If we are finding
the denotation of the term suc x, what should the variable x stand for? A variable
doesn’t pick out any one thing once and for all. So we won’t define a “once and for
all” denotation of a term that contains variables. Instead, we can interpret a term
with respect to a choice of values for for its variables. Once we choose a value for
a variable, terms using that variable get a denotation just like any other terms.

For example, consider the term suc x, which is a term in the language 𝐿ℕ(x), the
language of arithmetic with the variable x added to it. This term doesn’t have any
denotation at all in the standard model of arithmetic ℕ, because ℕ doesn’t assign
any denotation to the variable x. But we can expand this structure in lots of different
ways, by choosing a value for x. In the expanded structure ℕ[x ↦ 2], the variable x
denotes the number 2, and so the term suc x denotes the number 3. In a different
expanded structure ℕ[x ↦ 6], the term suc x denotes the number 7. Similarly,

⟦suc x ⋅ x⟧ℕ[x↦4] = (4 + 1) ⋅ 4 = 20

3.5.5 Definition
Let 𝐿 be a signature and let 𝑆 be an 𝐿-structure, and let 𝑥 be a variable (not in 𝐿).
Let 𝑑 be any element of the domain of 𝑆. Then we define the expansion 𝑆[𝑥 ↦ 𝑑]
to be the 𝐿(𝑥)-structure that is exactly like 𝑆, except that the variable 𝑥 is assigned
𝑑 as its extension. To be explicit:

𝐷𝑆[𝑥↦𝑑] = 𝐷𝑆
[𝑥]𝑆[𝑥↦𝑑] = 𝑑
[𝑐]𝑆[𝑥↦𝑑] = [𝑐]𝑆 for each 𝐿-name 𝑐
[𝑓]𝑆[𝑥↦𝑑] = [𝑓]𝑆 for each 𝐿-function symbol 𝑓
[𝐹]𝑆[𝑥↦𝑑] = [𝐹]𝑆 for each 𝐿-predicate 𝐹

If it is clear from context which variable we are talking about, we can write 𝑆(𝑑)
rather than 𝑆[𝑥 ↦ 𝑑].

This notation can get pretty cumbersome, so we’ll also introduce a nicer alternative.

3.5.6 Definition
Let 𝐿 be a signature and let 𝑆 be an 𝐿-structure, let 𝑥 be a variable, let 𝑡(𝑥) be an
𝐿(𝑥)-term. The extension of 𝑡(𝑥) in 𝑆, written ⟦𝑡(𝑥)⟧𝑆 , is the function that takes
each object 𝑑 ∈ 𝐷𝑆 to the denotation of 𝑡(𝑥) with respect to 𝑑. That is,

⟦𝑡(𝑥)⟧𝑆(𝑑) = for every 𝑑 ∈ 𝐷𝑆

144 CHAPTER 3. TERMS

For an object 𝑑 ∈ 𝐷𝑆 , we call ⟦𝑡(𝑥)⟧𝑆(𝑑) the denotation of 𝑡(𝑥) in 𝑆 with respect
to 𝑑.
(As before, we may leave out the 𝑆 subscripts when it is clear in context what
structure we are talking about.)

For example, the extension of suc suc x in the standard model of arithmetic ℕ is
the “add two” function.

We can also use this notation to rewrite the definition of the denotation function for
terms with variables a bit more cleanly.

3.5.7 Exercise
Let 𝐿 be a signature, let 𝑥 be a variable, let 𝑆 be an 𝐿-structure, and let 𝑑 ∈ 𝐷𝑆 .
Use the definitions to check:

(a) ⟦𝑥⟧𝑆(𝑑) = 𝑑.
(b) For each 𝐿-name 𝑐,

⟦𝑐⟧𝑆(𝑑) = [𝑐]𝑆

(c) For each 𝑛-place 𝐿-function symbol 𝑓 and terms 𝑡1(𝑥), …, 𝑡𝑛(𝑥),

⟦𝑓(…,𝑡𝑖(𝑥),…)⟧𝑆(𝑑) = [𝑓]𝑆(…, ⟦𝑡𝑖(𝑥)⟧𝑆(𝑑), …)

3.5.8 Example
Show step by step that the denotation of the term x ⊕ "D"with respect to the string
ABC in 𝕊 is the string ABCD.

Proof

⟦(x ⊕ "D")⟧𝕊(ABC) = ⟦x⟧𝕊(ABC) ⊕ ⟦"D"⟧𝕊(ABC) since [⊕]𝕊 is ⊕
= ⟦x⟧𝕊(ABC) ⊕ D since ["D"]𝕊 = D

= ABC ⊕ D

= ABCD □

3.5.9 Exercise
Show step by step that, with respect to the number 3 in ℕ, the term x ⋅ x denotes

3.5. VARIABLES 145

the number 9.

We have discussed two different ways of “plugging something into” a term 𝑡(𝑥). It
is important to keep them straight.

• First, we defined a syntactic operation. If we have a term 𝑎, we can plug this
into the term 𝑡(𝑥), and this produces another term 𝑡(𝑎). This operation is all
about gluing together certain strings.

• Second, we defined a semantic operation. If we have an object 𝑑 in the do-
main of a structure, then we can evaluate the denotation of 𝑡(𝑥) with respect
to 𝑑, and this produces another object ⟦𝑡⟧𝑑 in the domain. Or to put this an-
other way, we can plug the object 𝑑 into the function that the term 𝑡(𝑥) stands
for.

Substitution relates bits of language to other bits of language, while denotation re-
lates bits of language to things “out in the world.” But while it is very important not
to confuse these two ideas with each other, they are closely related, in the following
important way.

3.5.10 Exercise (Substitution Lemma)
Let 𝐿 be a signature, let 𝑆 be an 𝐿-structure, let 𝑡(𝑥) be an 𝐿(𝑥)-term, and let 𝑎
be an 𝐿-term. Suppose 𝑎 denotes 𝑑 in 𝑆. Prove by induction that the denotation
of 𝑡(𝑥) with respect to 𝑑 in 𝑆 is the same as the denotation of 𝑡(𝑎) in 𝑆. In short:

⟦𝑡(𝑥)⟧𝑆(⟦𝑎⟧𝑆) = ⟦𝑡(𝑎)⟧𝑆

What does this mean? Say we have terms 𝑡(𝑥) and 𝑎, and we want to stick them
together and figure out what this stands for in a structure. There are two different
ways of doing this. We could start by figuring out what object 𝑎 stands for, and
figure out what function 𝑡(𝑥) stands for, and then plug that object into this function.
Or we could start by plugging the term 𝑎 into 𝑡(𝑥), and figure out directly what the
resulting term 𝑡(𝑎) stands for. What Exercise 3.5.10 tells us is that we get exactly
the same result either way. This is a foundational fact that tells us that all of our
definitions are playing nicely together.

Using just our primitive symbols like 0, suc, +, or ⊕, we could describe a basic
object (zero), and a few basic functions. In Section 3.2, we discussed how we could
put symbols together to describe lots more objects. Now that we have variables,
we can also describe lots more more functions. For example, we can define the
“add two” function using the term suc suc x, and we can define the “take the third
power” function using the term (x ⋅ x) ⋅ x. In general, say 𝐷 is the domain of

146 CHAPTER 3. TERMS

a structure, and 𝑓 is any function from 𝐷 to 𝐷. We can “describe” or “express”
or “define” 𝑓 whenever we can find a term of one variable 𝑡(𝑥) that has 𝑓 as its
extension.

3.5.11 Definition
Let 𝐷 be the domain of an 𝐿-structure 𝑆, and suppose 𝑓 ∶ 𝐷 → 𝐷 is a function.
We say 𝑓 is simply definable (in 𝑆) iff there is some 𝐿-term of one variable whose
extension is 𝑓 . That is, there is some term 𝑡(𝑥) such that, for every element of the
domain 𝑑 ∈ 𝐷𝑆 ,

⟦𝑡⟧𝑆(𝑑) = 𝑓(𝑑)

Theword “simply” in this definition is there to signal that this is just our preliminary
definition of “definable”. We’ll give another definition later on, in Section 6.1, when
we have introduced more expressive languages. This will allow us to define even
more functions.

3.5.12 Exercise
Show that the doubling function is simply definable in the standard model of
arithmetic.

3.5.13 Exercise
Let 𝑎 ∈ 𝔸 be any symbol in the standard alphabet. Show that the function that
takes each string 𝑠 to (𝑠, 𝑎) (the result of appending the single symbol 𝑎 to 𝑠) is
simply definable in the string structure 𝕊.

So far we have just been considering adding a single variable to a language. We can
add more variables just by adding one variable at a time. The extension of a term
𝑡(𝑥, 𝑦) of two variables will be a two-place function, and to get the denotation of
𝑡(𝑥, 𝑦) we will need to supply a pair of objects (𝑑1, 𝑑2) from the domain. Otherwise
things go basically the exact same way.

3.5.14 Definition
Let 𝐿 be a signature and let 𝑥 and 𝑦 be variables.

(a) The notation 𝐿(𝑥, 𝑦) means the same thing as the expanded signature
𝐿(𝑥)(𝑦). First we add the variable 𝑥 to the signature 𝐿, and then we add the
variable 𝑦 to the expanded signature 𝐿(𝑥). The notation 𝑡(𝑥, 𝑦) indicates that
𝑡 is an 𝐿(𝑥, 𝑦)-term.

(b) The extension of a term 𝑡(𝑥, 𝑦), written ⟦𝑡(𝑥, 𝑦)⟧𝑆 , is the function such that,

3.5. VARIABLES 147

for each pair (𝑑1, 𝑑2) ∈ 𝐷2
𝑆 ,

⟦𝑡(𝑥, 𝑦)⟧𝑆(𝑑1, 𝑑2) = ⟦𝑡(𝑥, 𝑦)⟧𝑆[𝑥1↦𝑑1][𝑥2↦𝑑2]

We also call ⟦𝑡(𝑥, 𝑦)⟧𝑆(𝑑1, 𝑑2) the denotation of 𝑡(𝑥, 𝑦) in 𝑆 with respect to
(𝑑1, 𝑑2).

(c) For an 𝐿(𝑥, 𝑦)-term 𝑡(𝑥, 𝑦) and 𝐿-terms 𝑎 and 𝑏, the substitution instance
𝑡(𝑎, 𝑏) is defined to be the result of substituting 𝑎 and 𝑏 in one at a time.

(To be totally explicit: since 𝑡(𝑥, 𝑦) is a 𝐿(𝑥)(𝑦)-term, and 𝑏 is an 𝐿(𝑥)-term
(by Example 3.5.2), we can apply the usual definition of substitution (Defini-
tion 3.5.4) to the signature 𝐿(𝑥) and the variable 𝑦, to get an 𝐿(𝑥)-term 𝑡(𝑥, 𝑏).
Then we can use Definition 3.5.4 again to substitute the 𝐿-term 𝑎 into 𝑡(𝑥, 𝑏).
The result is what we call 𝑡(𝑎, 𝑏).)

3.5.15 Example
For any numbers 𝑚 and 𝑛 in ℕ, the denotation of the term suc x ⋅ y of two vari-
ables (x, y), with respect to (𝑚, 𝑛) in the standard model of arithmetic, is (𝑚 + 1) ⋅ 𝑛.

Proof

⟦suc x ⋅ y⟧ℕ(𝑚, 𝑛)
= ⟦suc x⟧ℕ(𝑚, 𝑛) ⋅ ⟦y⟧ℕ(𝑚, 𝑛)
= suc⟦x⟧ℕ(𝑚, 𝑛) ⋅ ⟦y⟧ℕ(𝑚, 𝑛)
= suc𝑚 ⋅ 𝑛 = (𝑚 + 1) ⋅ 𝑛

The step to the last line is using the fact that x was assigned the value 𝑚 and y was
assigned the value 𝑛 in the expanded structure ℕ[x ↦ 𝑚][y ↦ 𝑛]. (We get the
relevant variables and their order from context, since we know we are evaluating
an 𝐿ℕ(x, 𝑦𝑉)-term.) □

Similarly, the extension of the 𝐿𝕊(x, y)-term x ⊕ " " ⊕ y in the standard string
structure 𝕊 is the function that takes a pair of strings and returns the result of putting
a space between them. For example,

⟦x ⊕ " " ⊕ y⟧𝑆(the, cat) = the cat

Or in other words, x ⊕ " " ⊕ y, in 𝕊, with respect to (the, cat), denotes the cat.

All of this generalizes straightforwardly for any number of variables. Let’s go ahead
and spell it all out.

148 CHAPTER 3. TERMS

3.5.16 Definition
Let 𝐿 be a signature and let �̄� be a sequence of 𝑛 variables.

(a) 𝐿(�̄�) means the same thing as the expanded signature 𝐿(𝑥1)⋯(𝑥𝑛), expand-
ing the signature one variable at a time. The notation 𝑡(�̄�) indicates that 𝑡 is
an 𝐿(�̄�)-term.

(b) The extension of a term 𝑡(�̄�) is the function, written ⟦𝑡(�̄�)⟧𝑆 , such that for
each 𝑛-tuple ̄𝑑 ∈ 𝐷𝑛

𝑆 ,

⟦𝑡(�̄�)⟧𝑆(̄𝑑) = ⟦𝑡(�̄�)⟧𝑆[𝑥1↦𝑑1]⋯[𝑥𝑛↦𝑑𝑛]

where we have also expanded the structure 𝑆 one variable and value at a time.
We also call the object ⟦𝑡(�̄�)⟧𝑆(̄𝑑) the denotation of 𝑡(�̄�) in 𝑆 with respect
to ̄𝑑.

(c) For an 𝐿(�̄�)-term 𝑡(�̄�) and a sequence of 𝐿-terms ̄𝑎 the substitution instance
𝑡(̄𝑎) is understood by applying Definition 3.5.4 to each variable, one at a time.

A more general version of the Substitution Lemma follows from these definitions.

3.5.17 Proposition (General Substitution Lemma)
Let 𝐿 be a signature, let 𝑆 be an 𝐿-structure, let �̄� be a sequence of variables, let
𝑡(�̄�) be an 𝐿(�̄�)-term, and let ̄𝑎 be a sequence of 𝐿-terms.

⟦𝑡(�̄�)⟧𝑆(…, ⟦𝑎𝑖⟧𝑆 , …) = ⟦𝑡(̄𝑎)⟧𝑆

If the general statement of the Substitution Lemma is confusing, it may be helpful
to check what this says for a term with just two variables.

Let 𝑡(𝑥1, 𝑥2) be a term of two variables, and let 𝑎1 and 𝑎2 be two terms.
Let 𝑆 be any structure. Then

⟦𝑡⟧𝑆(⟦𝑎1⟧𝑆 , ⟦𝑎2⟧𝑆) = ⟦𝑡(𝑎1, 𝑎2)⟧𝑆

That is, if 𝑎1 denotes 𝑑1 and 𝑎2 denotes 𝑑2, then 𝑡(𝑎1, 𝑎2) denotes the
same thing that 𝑡(𝑥1, 𝑥2) denotes with respect to (𝑑1, 𝑑2).

Proof
We can prove this by induction on the sequence of variables, using the one-variable
Substitution Lemma that we have already proved (Exercise 3.5.10).

1. For the empty sequence, we have the limiting case where 𝑡(�̄�) is simply a
term 𝑡. Then the two sides are trivially the same.

3.6. REVIEW 149

2. Let �̄� be a sequence of variables. For the inductive hypothesis, we suppose
that for any 𝐿(�̄�)-term 𝑢(�̄�) and any sequence of terms ̄𝑎,

⟦𝑢(�̄�)⟧𝑆(…, ⟦𝑎𝑖⟧𝑆 , …) = ⟦𝑢(̄𝑎)⟧𝑆

We wish to show that this still holds when we add an an additional variable
𝑦. Accordingly, let 𝑡(�̄�, 𝑦) be any 𝐿(�̄�, 𝑦)-term, and let (̄𝑎, 𝑏) be a sequence of
terms.

⟦𝑡(�̄�, 𝑦)⟧𝑆(…, ⟦𝑎𝑖⟧𝑆 , …, ⟦𝑏⟧𝑆)
= ⟦𝑡(�̄�, 𝑏)⟧𝑆(…, ⟦𝑎𝑖⟧𝑆 , …) Substitution Lemma
= ⟦𝑡(̄𝑎, 𝑏)⟧𝑆 inductive hypothesis

To apply the Substitution Lemma, we are using the fact that 𝐿(�̄�, 𝑦) is the
same thing as adding just one variable 𝑦 to the signature 𝐿(�̄�). To apply the
inductive hypothesis, we are using the fact that 𝑡(̄𝑎, 𝑏) is an 𝐿(�̄�)-term—the
extra variable 𝑦 is gone, because we replaced it with 𝑏. □

3.5.18 Definition
Let 𝑆 be an 𝐿-structure. An 𝑛-place function 𝑓 ∶ 𝐷𝑛

𝑆 → 𝐷𝑆 is simply definable in
𝑆 iff there is some 𝐿(�̄�)-term 𝑡(�̄�) whose extension is 𝑓 . That is, for any sequence
of objects ̄𝑑 ∈ 𝐷𝑛

𝑆 ,
⟦𝑡⟧𝑆(̄𝑑) = 𝑓(̄𝑑)

3.5.19 Exercise
Let 𝑓 ∶ 𝕊2 → 𝕊 be the two-place function that takes a pair of strings 𝑠 and 𝑡
to the result of joining together three copies of 𝑠, separated by copies of 𝑡. For
example,

𝑓(foo, bar) = foobarfoobarfoo

Show that this function 𝑓 is simply definable in 𝕊. (Explicitly work through the
definition of the denotation function to prove this.)

3.6 Review

Key Techniques

• We can use structures to represent the relationship between simple languages
and the world.

150 CHAPTER 3. TERMS

• You can prove that every term has a certain property by induction on terms.
(Technique 3.2.2)

• You can recursively define a function whose domain is the set of all terms.
(Technique 3.2.7)

Key Concepts and Facts

• A structure consists of a set of objects called its domain, together with ex-
tensions for names, variables, and function symbols. (Definition 3.1.3)

• Terms are built up recursively out of names and function symbols. (Defini-
tion 3.2.1)

• A signature can be expanded by adding a new “arbitrary” name, which we
call a variable. Structures can also be expanded by assigning a value to
the variable. The expansion of 𝐿 is called 𝐿(𝑥), and the expansion of 𝑆 is
called 𝑆[𝑥 ↦ 𝑑]. Once we do this, the syntax and semantics for terms with
variables works just the same as before.

• You can plug a term into a another term using substitution. (Definition 3.5.4)

• In any structure, each term denotes an object, with respect to some sequence
of objects in the domain which are “input” values for its variables. (Defini-
tion 3.2.10)

• We can use terms to represent functions. The extension of a term 𝑡(𝑥) in a
structure is the function that takes each object 𝑑 to the denotation of 𝑡(𝑥) with
respect to 𝑑. (Definition 3.5.6)

• These ideas (substitution, denotation, and extension) are closely related: for
any 𝐿(𝑥)-term 𝑡(𝑥), any 𝐿-term 𝑎, and any 𝐿-structure 𝑆,

⟦𝑡⟧𝑆⟦𝑎⟧𝑆 = ⟦𝑡(𝑎)⟧𝑆

(Exercise 3.5.10)

Chapter 4

The Uncountable

Unity added to infinity adds nothing to it, any more
than does one foot added to infinite length. The finite
is annihilated in presence of the infinite, and becomes
pure nothingness. So does our mind before God …

Blaise Pascal, Pensées (1670)

People have been mystified by the infinite every since they first noticed it in
antiquity—for example, that there are infinitely many numbers, and (perhaps)
infinitely many different positions in space or time. In the quotation above,
Pascal is playing up the mystery (for theological purposes) but he is pointing to
something genuinely weird. Consider an infinite ray, extending from a point 𝐴 in
one direction, forever. Next consider another point 𝐵 which is one foot from 𝐴
along this ray.

A B
· · ·

Figure 4.1: An infinite ray

Suppose we just delete the part of the ray between 𝐴 and 𝐵. What are we left with?
It’s another infinite ray starting from 𝐵—a ray which looks exactly like the ray we
began with. In particular, it is the same size as the ray we began with—infinite.1

1This puzzle is inspired by one of Zeno’s paradoxes—though it is hard to tell from the surviv-
ing fragments what exactly Zeno’s original puzzle was. In his commentary, Simplicius quotes (or
paraphrases) Zeno: “But if when it is subtracted, the other thing is no smaller, nor is it increased

151

152 CHAPTER 4. THE UNCOUNTABLE

But if the ray from 𝐴 and the ray from 𝐵 are the same, then the difference between
them—the foot from 𝐴 to 𝐵—seems to make no difference at all. A finite distance
seems to become “pure nothingness”!

But while we may be mystified, this doesn’t mean we can make no further progress.
This puzzle is not a stopping place, but a starting place. The puzzle points us to an
essential feature of infinity. If something is infinitely large, then it is the same size
as one of its parts. (Since that part is also infinite, it is then also the same size as
one of its parts—we can delete the next mile after 𝐵, and the next mile after that,
and so on, and at every step we are left with another infinite ray just like the first.
So in fact, something infinite is the same size as infinitely many different parts.)

We can make the idea of the “size” of a set more precise using one-to-one corre-
spondences (which we introduced in Section 1.2). If we can pair off the elements of
two sets, so that neither of them has any extra elements left over, then this gives us a
precise sense in which the two sets are the same “size”, or have the same number of
elements. Then this is the basic observation: an infinite set can be put in one-to-one
correspondence with one of its proper subsets.

Once we see this, though, this raises many questions. What sets can be put in
one-to-one correspondence? As we’ll see in Section 4.2, it’s lots more than you
might initially think. For example, you might think it’s obvious that there are more
numbers than there are even numbers, and that there are more pairs of numbers
than there are numbers. But these thoughts are wrong.

Youmight also be tempted by the opposite thought, that all infinite sets are the same
size. But as it turns out, just as finite sets come in many different sizes, there are also
infinite sets which have different sizes. In fact, there are infinitely many different
sizes of infinite sets. This chain of ever-vaster infinities is very beautiful, but it also
turns out to be a surprisingly practical tool. Just as it’s helpful to use individual
numbers as a measuring stick against finite sets—we call this counting, and we’ve
done it since prehistory—the set of all natural numbers is a useful measuring stick
for infinite sets. The set of natural numbers is the smallest kind of infinity.

These beautiful facts follow pretty straightforwardly from Cantor’s Theorem (Ex-
ercise 1.5.3), which was proved using the “self-application” (or “diagonalization”)
trick.

when it is added, clearly the thing being added or subtracted is nothing.” (sec. 139.9) TODO CITE
The paradox of addition is developed much more explicitly as an argument against the infinite by the
Arab philosopher al-Kindī (c. 801-866 CE). McGinnis (2007) gives a nice overview of these histori-
cal debates. The Indian mathematician Bhāskara (c. 1114–1185) took a similar idea in the opposite
direction, developing a calculus of infinite quantities that included rules like 1 + ∞ = ∞.

4.1. COUNTING 153

4.1 Counting

Galileo wrote, “It is wrong to speak of infinite quantities as being the one greater or
less than or equal to the other.”2 The history of philosophy, science, and mathemat-
ics is full of warnings like this—cautions which, as Georg Cantor wrote in 18833,
are

intended to contain the flight of mathematical speculation and concep-
tualization within its true limits, where it runs no danger of falling into
the abyss of the “transcendent,” the place where supposedly, as is said
in order to inspire fear and wholesome terror, “all is possible.”

But in fact, infinity is not a conceptual “abyss” about which it is impossible to even
think clearly. One key discovery (made precise by Cantor) is that there really is a
reasonable way of making size comparisons between infinite sets. We really can
speak of infinite quantities as greater or less or equal in a way that makes perfect
sense. There are some ways in which our intuitions (guided by our experience with
finite sets) might lead us astray—so we so have to be careful. But “wholesome
terror” would be overreacting!

Consider this function (from Example 1.2.3)

[1 ↦ Los Angeles, 2 ↦ San Diego, 3 ↦ San Jose]

This function is a one-to-one correspondence between the sets

𝐴 = {1, 2, 3}
𝐵 = {Los Angeles,San Diego,San Jose}

It pairs off each element of 𝐴 with exactly one element of 𝐵, with no elements left
over. This is possible because 𝐴 and 𝐵 are both three-element sets. They are two
different sets with the same number of elements—they are the same size.

We can generalize this idea. In general, if 𝐴 and 𝐵 are any sets, then if there is a
one-to-one correspondence between 𝐴 and 𝐵, this pairs off each element of 𝐴 with
exactly one element of 𝐵, with no elements left over. We can line up the elements
of 𝐴 with the elements of 𝐵, and neither set sticks out past the other. This gives
us a reasonable sense in which 𝐴 and 𝐵 have the same size, or the same number of
elements. In fact, we will use this as a definition.

21638, Two New Sciences CITE
3CITE “Foundations of a General Theory of Manifolds”

154 CHAPTER 4. THE UNCOUNTABLE

4.1.1 Definition
If 𝐴 and 𝐵 are sets, 𝐴 and 𝐵 have the same number of elements iff there is a
one-to-one correspondence between 𝐴 and 𝐵. This is abbreviated 𝐴 ∼ 𝐵.

4.1.2 Example
(a) Exercise 1.3.3 showed that there is a one-to-one correspondence between 𝐴×

𝐵 and 𝐵 × 𝐴. That is,
𝐴 × 𝐵 ∼ 𝐵 × 𝐴

(b) Exercise 1.3.5 showed tht there is a one-to-one correspondence between (𝐴×
𝐵) × 𝐶 , and 𝐴 × (𝐵 × 𝐶). That is,

(𝐴 × 𝐵) × 𝐶 ∼ 𝐴 × (𝐵 × 𝐶)

(c) Exercise 1.3.4 showed that there is a one-to-one correspondence between any
set 𝐴 and the diagonal of 𝐴 × 𝐴. That is,

𝐴 ∼ {(𝑎1, 𝑎2) ∈ 𝐴 × 𝐴 ∣ 𝑎1 = 𝑎2}

(d) Exercise 1.4.7 showed that there is a one-to-one correspondence between the
subsets of a set 𝐴 and the functions from 𝐴 to a two-element set. That is,

𝑃 𝐴 ∼ 𝟚𝐴

(e) Example 1.4.8 showed that for any set 𝐴,

𝐴𝟚 ∼ 𝐴 × 𝐴

(f) Exercise 1.4.9 showed that for any set 𝐴,

𝐴𝟙 ∼ 𝐴

(g) Exercise 1.4.10 showed that for any sets 𝐴, 𝐵, and 𝐶 ,

𝐶𝐴×𝐵 ∼ (𝐶𝐴)𝐵

Notice that our definition of “same number” doesn’t actually say anything about
numbers. You can think of has-the-same-number-of-elements-as if it was just one
word, which describes a certain relationship between sets. In particular, this no-
tion of “same number of elements” even makes sense when we apply it to infinite

4.1. COUNTING 155

sets, which don’t have any finite number of elements. For example, the facts in
the previous example are not restricted just to finite sets. For example, the infinite
set of functions ℕ𝟚 has-the-same-number-of-elements-as the infinite set of pairs of
numbers ℕ × ℕ.

But we have to be careful: there are some ways in which this can be counterintuitive.

4.1.3 Exercise (Hilbert’s hotel)
There is a one-to-one correspondence between ℕ (the set of all numbers) and its
proper subset ℕ − {0}. That is, ℕ has the same number of elements as ℕ − {0}.

Imagine that there is an infinite hotel, with one room for each natural number. Every
room has one person in it. What Exercise 4.1.3 shows is that it is still possible to
accommodate another person, without kicking anybody out or doubling up. We can
use the one-to-one correspondence in Exercise 4.1.3 to rearrange people within the
hotel, giving each person a new room, in a way that leaves room 0 unoccupied for
a new guest. An infinite hotel can be full, but still have room for more people.

In fact, this is the defining feature of infinite sets.

4.1.4 Definition
A set 𝐴 is infinite iff there is a one-to-one correspondence from 𝐴 to some proper
subset of 𝐴. That is, 𝐴 is infinite iff there is some proper subset 𝐵 ⊊ 𝐴 such that
𝐴 ∼ 𝐵. Otherwise, 𝐴 is finite.

So Exercise 4.1.3 shows that, in this official sense, there are infinitely many num-
bers.

Here is another way of putting this definition.

4.1.5 Proposition
𝐴 is infinite iff there is a function 𝑓 ∶ 𝐴 → 𝐴 which is one-to-one, but not onto.

Proof
Suppose that 𝐴 is infinite: that is, for some proper subset 𝐵 ⊊ 𝐴, there is a one-
to-one correspondence 𝑓 ∶ 𝐴 → 𝐵. In that case, 𝑓 is a one-to-one function, and
the range of 𝑓 is not the same as 𝐴, so there is a function from 𝐴 to 𝐴 which is
one-to-one but not onto.

For the other direction, suppose that 𝑓 ∶ 𝐴 → 𝐴 is one-to-one and not onto. Then,
by Exercise 1.2.16, there is a one-to-one correspondence between 𝐴 and the range
of 𝑓 , which by assumption is a proper subset of 𝐴. So 𝐴 is infinite. □

156 CHAPTER 4. THE UNCOUNTABLE

4.1.6 Exercise
The set 𝕊 of all strings is infinite.

4.2 Countable Sets

Our abstract definition of “same number of elements” using functions is especially
useful when it comes to infinite sets. In this case, our intuitions about counting, and
about which sets are the “same size” or “different sizes,” are not very reliable. We
need these precise abstract tools to make progress.

Let’s start by focusing on ℕ, the set of numbers. In Section 4.1 we discussed one
counterintuitive feature of this set: it has the same number of elements as one of
its proper subsets. If we have infinitely many people in hotel rooms numbered
0, 1, 2, 3, …, then we can shift each of them down to the next room. This puts
them in the rooms 1, 2, 3, 4, …, leaving room 0 unoccupied.

We can go much further than this. Suppose Hilbert’s hotel is full, and then in-
finitely many guests arrive. Can we accommodate them? That is, can we rearrange
the guests in rooms 0, 1, 2, 3, … in such a way as to leave infinitely many rooms
unoccupied? Yes, we can.

4.2.1 Exercise
The set of even numbers {0, 2, 4, …} has the same number of elements as ℕ.
That is, if 𝐸 is the set of even numbers, then 𝐸 ∼ ℕ.

This shows that we can move the guests in Hilbert’s hotel into just the rooms
0, 2, 4, 6, …, without kicking anyone out, or doubling people up in the same room,
leaving all of the odd-numbered rooms unoccupied. This is counterintuitive. The
set of even numbers 𝐸 leaves out infinitely many numbers. It’s very intuitive to
think think that this means there aren’t as many even numbers as natural numbers:
that is, that 𝐸 < ℕ. This intuitive thought is wrong!

Very similarly, one can show that the set of all odd numbers is in one-to-one corre-
spondence with ℕ. So in fact, the set of all numbers ℕ is a union of two sets, each
of which has the same number of elements as ℕ. We can take two “copies” of ℕ
(the even numbers and the odd numbers) and stick them together, and we end up
with a set which is the same size as we started with.

This raises an interesting question: of the many different infinite sets out there,
which of them are the same size as the set of numbers? Are there just as many

4.2. COUNTABLE SETS 157

strings as numbers, or is one of these infinite sets bigger than the other? What
about the set of all sets of numbers? What about sets of strings?

4.2.2 Definition
A set is countably infinite iff it has the same number of elements as the set of
numbers—that is, 𝐴 ∼ ℕ.

A set is countable iff it is either countably infinite or else finite.

When we count things, we point at each one of them and say a number. If the set
is finite, then we can count all of them using just finitely many numbers. That is,
if 𝐴 is a finite set, then there is a one-to-one correspondence between 𝐴 and the
numbers 0, 1, 2, …, 𝑛, for some number 𝑛. If 𝐴 is an infinite set, then this process
can never stop. But suppose we don’t have to stop—we just keep counting forever.
Then we might succeed in “counting” 𝐴 in the sense of assigning every element
of 𝐴 a unique number. We might put 𝐴 in one-to-one correspondence with all the
numbers. A countable set is one that can be counted in this way using either some
or all of the counting numbers. (We haven’t actually proved this about finite sets,
though—see Section 4.4 for further details.) Many important sets can be “infinitely
counted” this way—but as we will see, not all of them!

Another useful way to think about a countably infinite set is as one that can be listed
in an infinite sequence. Putting things into an ordered sequence basically amounts
to the same thing as assigning each of them a number—its position in the sequence.
This works for infinite sequences, too. For example, consider this infinite sequence:

A, B, C, A, B, C, …

To represent this sequence, we just need to specify which letter appears at each
place in the sequence: at position 0 we have A, at 1, B, at 2, C, and so on. So we can
represent this sequence with the function

[0 ↦ A, 1 ↦ B, 2 ↦ C, 4 ↦ A, 5 ↦ B, 6 ↦ C, …]

4.2.3 Definition
For any set 𝐴, an infinite sequence of elements of 𝐴 is a function from ℕ to 𝐴. So
𝐴ℕ is the set of all infinite sequences in 𝐴.

(Really, there can also be infinite sequences that are even longer than this sort of
sequence. A more precise name for this particular kind of infinite sequence is an
omega-sequence, or 𝜔-sequence.)

158 CHAPTER 4. THE UNCOUNTABLE

So another way of putting Definition 4.2.2 is that a countably infinite set is one
whose elements can be listed in an infinite sequence (or else the empty set).

Let’s look at another important example. How does the set of strings compare in
size to the set of numbers? Is it countable? We could try to list the strings one by
one like this:
A
AA
AAA
AAAA
⋮

But this is not encouraging—putting the strings in this order, we’ll never reach
any string that includes the letter B. But remember, just because we can find some
infinite list that doesn’t include every string, that doesn’t mean there isn’t some
other way of listing strings that does include them all. In fact, we can use this trick.
First list all the length-zero strings (the empty string). Then list all the length-one
strings, in alphabetical order. Then list all the length-two strings, in alphabetical
order. And so on. For any number 𝑛, there are only finitely many length-𝑛 strings.
So eventually, going on this way, we will reach every string.

If we imagine that the alphabet just includes the symbols A, B, and C, this sequence
of strings will look like this:

(),
A, B, C,
AA, AB, AC, BA, BB, BC, CA, CB, CC,
AAA, AAB, AAC, ABA, ABB, ABC, …

This should be enough to get across the main idea, showing that it is possible to
list all of the strings in one infinite list. For most purposes, we don’t need to bother
with making this proof completely official.

4.2.4 Proposition
The set of strings 𝕊 is countably infinite. That is 𝕊 ∼ ℕ.

To make the proof of this fact more precise, we can explicitly define the functions
this infinite sequence corresponds to—a function from numbers to strings, and an-

4.2. COUNTABLE SETS 159

other function from strings to numbers which is its inverse.

0 ↦ (), 1 ↦ A, 2 ↦ B, 3 ↦ C, 4 ↦ AA, …
() ↦ 0, A ↦ 1, B ↦ 2, C ↦ 3, AA ↦ 4, …

Writing out this correspondence carefully and checking it is kind of fiddly and in-
volves a bit of basic number theory; the details are given in Section 4.3.

These details aren’t very important for our current purposes—but the basic idea is
important. Each string can be assigned a unique numerical code. There are two
functions

code ∶ 𝕊 → ℕ
decode ∶ ℕ → 𝕊

which are inverses to each other. This is the underlying idea of how computers
represent data. When text is stored on a computer, it is represented as a sequence
of bits—zeros and ones. Essentially, text is thus represented by a very large num-
ber. Representing strings with numbers is called “arithmetization.” This makes it
possible to talk about properties of strings obliquely, in the language of numbers,
by talking about arithmetical properties of their numerical codes. (This idea will
come up again in Section 6.11. Numerical codes for strings are also called Gödel
numbers.)

Here is another useful perspective on countable sets.

4.2.5 Definition
Let 𝐴 and 𝐵 be sets. We say that 𝐵 has at least asmany elements as𝐴, abbreviated
𝐵 ≳ 𝐴 (or 𝐴 ≲ 𝐵), iff 𝐴 has the same number of elements as some subset of 𝐵.

4.2.6 Exercise
For any sets 𝐴 and 𝐵, 𝐴 ≲ 𝐵 iff there is some one-to-one function from 𝐴 to 𝐵.

An important foundational fact is that the set of natural numbers ℕ is at least as
big as any countable set, and there is no infinite set smaller than ℕ. It follows that
being countable is the same thing as having no more elements than there are natural
numbers. To prove this, we’ll start by using a different notion that is closely related
to finiteness.

4.2.7 Definition
A set of numbers 𝑋 ⊆ ℕ is bounded iff there is some number 𝑛 ∈ ℕ such that
𝑥 ≤ 𝑛 for every 𝑥 ∈ 𝑋.

160 CHAPTER 4. THE UNCOUNTABLE

4.2.8 Proposition
For any unbounded set of numbers 𝑋 ⊆ ℕ, 𝑋 ∼ ℕ.

Proof sketch
Here is the intuitive idea for how to show this. If 𝑋 is an unbounded set of numbers,
then 𝑋 has a least element, and a second-least element, and a third-least element,
and so on. This defines a one-to-one correspondence between 𝑋 and the set of all
numbers. That basic idea will do for now; making this argument totally precise is
a bit tricky, so we’ll put the details in Section 4.4.

TODO. Illustration □

Completing the proof then turns on a basic fact about finite sets that may seem
obvious, but which is actually kind of tricky to prove using our official definitions.
We’ll take this for granted here; Section 4.4 takes you through a careful proof.

4.2.9 Proposition
A set is finite iff it has the same number of elements as some bounded set of numbers.
That is, for any set 𝐴, 𝐴 is finite iff there is some bounded set 𝑋 ⊆ ℕ such that
𝐴 ∼ 𝑋.

4.2.10 Exercise
Using Proposition 4.2.9 and Proposition 4.2.8, show that for any set 𝐴, 𝐴 is
countable iff 𝐴 ≲ ℕ.

Now we can use the one-to-one correspondence between numbers and strings to
put this a different way.

4.2.11 Exercise
A set 𝐴 is countable iff there is a one-to-one function from 𝐴 to 𝕊.

This way of thinking about what it means to be countable is particularly important in
logic: a countable set is a set whose elements can bewritten down in some system of
notation or other. If 𝐴 is countable, we can assign each element of 𝐴 a unique string
as its label. So the countable sets include all the sets that can be “named” in any
language whose expressions can be written down as a finite sequence of symbols.
In general, we’ll call a one-to-one function from 𝐴 to 𝕊 a string representation for
𝐴, or a labeling for 𝐴.

This tells us, in particular, that all of the languages we discussed in Chapter 3 are

4.2. COUNTABLE SETS 161

countable. The terms in the language of arithmetic are strings of symbols. So are
the terms in the language of strings, and any other language we might discuss in
this class.

4.2.12 Proposition
For any signature 𝐿, the set of 𝐿-terms is countable.4

For another example, we already know that there are one-to-one functions from
numbers to strings. This follows from the fact that there are infinitely many strings.
But another way to get here is from the fact that there is a labeling function, which
represents each number with a unique string. The system we have used in our offi-
cial language of arithmetic is the simple “unary” notation (Definition 3.2.13):

0 ↦ 0

1 ↦ suc 0

2 ↦ suc suc 0

⋮
𝑛 ↦ ⟨𝑛⟩

Exercise 3.2.14 told us that this representation is unique: the function that takes
each number to its numeral is one-to-one.

Many things can be written down as strings—even things that might initially appear
to be more complicated than strings. Consider ordered pairs of strings. This set is
also countable. One way to show this would be to come up with a way of arranging
all these pairs in an infinite list. But a different approach is to think about how we
can write down an ordered pair of strings, as a single string.

One temptingway to do this would be to write down the two strings side by side. For
example, we could try to represent the pair (ABC, DE) with the single string ABCDE.
But this won’t quite work: this representation loses track of where one string ends
and the other begins. We’ll need to mark the boundary between them. Another
thing to try is to put a delimiting symbol in between them, like a comma. But this
also won’t quite work. Consider the string A,,C. This would be ambiguous between
two different pairs of strings: (A,, B) and (A, ,B).
Here’s a trick to avoid this problem. Instead of just joining up the strings, we can
join up labels for the two strings. In Exercise 3.2.16, we showed that for each string,

4This is relying on our stipulation that all of the basic names and function symbols in a signature
are strings. For abstract signatures where we do not require this, we would need to add the additional
requirement that 𝐿 is a countable signature.

162 CHAPTER 4. THE UNCOUNTABLE

we can choose a term in the language of strings that denotes it. For example, for
the string ABC, we might choose the label
("A" ⊕ ("B" ⊕ ("C" ⊕ "")))

We call this the quotation of ABC. Wewill also sometimes use shorthand like "ABC"
for the spelled-out quotation label ("A" ⊕ ("B" ⊕ ("C" ⊕ ""))), which is a term
in the language of strings.

Arbitrary strings might be annoying to stick together, but these labels for the strings
are guaranteed to be nice expressions in a well-behaved language. In particular, we
have engineered this language so that it does not use every symbol in the alphabet,
and so that terms have unique parses.

Now we can represent a pair of strings by sticking their quotations together. For
neatness, we can put a newline symbol in between them—this symbol is guaranteed
not to appear in any term in the language of strings, so we can’t get any ambiguities
this way.5 For example, we can represent the ordered pair of strings (AB, C) with the
two-line string
"A" ⊕ "B" ⊕ ""
"C" ⊕ ""

This even works for strings that have newlines in them! For example, consider this
two-line string:
AB
C

The label for this string is
"A" ⊕ "B" ⊕ new ⊕ "C" ⊕ ""

Notice that this label is a single-line string: this is because the newline isn’t repre-
sented by something that includes newline, but rather by the constant new. Now say
we want to represent the ordered pair whose first element this two-line string, and
whose second element is D. This pair is unambiguously represented by

5Remember that in our official notation, this label for the string ABC is really
⊕("A",⊕("B",⊕("C",""))

This has commas in it. If we also used commas for pairs, we wouldn’t actually get any ambiguities
(because of the Parsing Theorem!), but it would make decoding pairs a little more complicated—
particularly when we get a bit fancier in Section 6.4.

4.2. COUNTABLE SETS 163

"A" ⊕ "B" ⊕ new ⊕ "C" ⊕ ""
"D" ⊕ ""

This is just a two-line string, rather than blowing up into an ambiguous three-line
string like
AB
C
D

Whenwe represent strings using their labels, it is easy to recover the original strings.
We just have to split up the lines, and then figure out which string each line repre-
sents.

(To be clear, there is nothing magical about the newline symbol, and this trick does
not essentially rely on “multiline strings.” The newline symbol just happens to be a
convenient symbol that we weren’t already using for other purposes, which makes
for pretty formatting. The convenient thing about the newline symbol is that its
name in the language of strings, new, does not include that same symbol. But we
could have done this with any symbol, just by choosing an appropriate name for it.)

4.2.13 Proposition
The set of ordered pairs of strings 𝕊 × 𝕊 is countable.

Proof
Let ⟨⋅⟩ be a label function as in Exercise 3.2.16, which assigns each string 𝑠 a term
that denotes 𝑠 in the standard string structure. We can define a string representation
function for 𝕊 × 𝕊. In general, if ⟨𝑠⟩ and ⟨𝑡⟩ are the labels for the strings 𝑠 and 𝑡,
then we can represent the ordered pair of strings (𝑠, 𝑡) with

rep(𝑠, 𝑡) = ⟨𝑠⟩ ⊕ newline⊕⟨𝑡⟩ for each pair of strings (𝑠, 𝑡) ∈ 𝕊 × 𝕊

This function rep is one-to-one, so 𝕊 × 𝕊 is countable. (Checking this involves
another little parsing fact: since each string in the range of rep contains exactly
one newline symbol, there is only one way of breaking it up into two lines. See
Section 4.3.) □

Since we can write down an ordered pair of strings as a single string, it follows
that we can also write down ordered pairs of anything that can be represented by
strings. For example, we can write down pairs of numbers. One obvious way to
do this would be with strings like (3, 1). This would work, and since numerals
don’t include commas it would be unambiguous. But another way to do it is using

164 CHAPTER 4. THE UNCOUNTABLE

the fact we have just proved: each number can be written as a string, and we have a
general strategy for representing pairs of strings. This trick works for anything that
has a string representation.

4.2.14 Exercise
If 𝐴 and 𝐵 are each countable sets, then 𝐴 × 𝐵 is countable.

In particular, this tells us that the set of ordered pairs of numbers ℕ×ℕ is countable.
It’s worth pausing to think about this fact, because it’s rather striking. How would
you put all of the ordered pairs of numbers into a single infinite list? You might try
to start listing the ordered pairs like this:

(0, 0), (0, 1), (0, 2), …

But this will never get you to any of the pairs

(1, 0), (1, 1), (1, 2), …

or
(2, 0), (2, 1), (2, 2), …

and so on. Each of these lists of numbers looks just like a copy of the numbers. So
ℕ × ℕ looks like infinitely many copies of ℕ put together. The fact that ℕ × ℕ is
countable tells us that we can squish all of these infinitely many copies of ℕ into
just one copy of ℕ. Not only can Hilbert’s hotel accommodate some extra guests,
and not only can it accommodate infinitely many extra guests, but in fact it can
hold infinitely many Hilbert’s hotels full of guests. This might seem pretty weird.
How could you flatten out this two-dimensional grid of numbers in a single one-
dimensional list? It can be done. One way, suggested by the proofs we have just
given, is to first write out each pair of numbers as a string, and then list those strings
in order from shortest to longest, with ties broken alphabetically. An alternative way
of doing this is suggested by Fig. 4.2.

We can straightforwardly generalize the idea of Proposition 4.2.13: we can use
exactly the same trick to write down any finite sequence of strings.

4.2.15 Exercise
(a) Explain why the set of all finite sequences of strings is countable, by de-

scribing a string representation function. (You don’t have to rigorously
prove that this function is one-to-one.)

4.3. CODING AND PARSING DETAILS* 165

(0, 0)

(0, 1)

(1, 0) (2, 0)

(1, 1)

(0, 2)

(3, 0)

(2, 1)

(1, 2)

(0, 3)

...

· · ·

. . .

Figure 4.2: A way of listing ordered pairs

(b) For any countable set 𝐴, the set 𝐴∗ of all finite sequences of elements of
𝐴 is also countable.

4.3 Coding and Parsing Details*

In this section we’ll fill in some of the details we glossed over in the previous section.

First, we’ll discuss the details of the correspondence between numbers and strings,
in order to show that the set of strings is countable. What we need to do is define
a numerical code for each string, and then show that we can convert back and forth
between strings and their codes. That is, we will define a coding function from
strings to numbers, andwe can prove that this function is one-to-one by also defining
a decoding function. The key thing to check is that if you decode a code for a string,
you get the original string back. (Numerical codes for strings are also sometimes
called Gödel numbers.)

The details of the coding involve a little bit of basic arithmetic. In particular, we will
use the fact that it is possible to divide one number by another, with a remainder.

4.3.1 Exercise (Division Lemma)
Let 𝑛 > 0. For any number 𝑚, there are unique numbers 𝑞 and 𝑟 such that 𝑟 < 𝑛
and 𝑚 = 𝑛⋅𝑞+𝑟. The number 𝑞 is the quotient, and the number 𝑟 is the remainder.

4.3.2 Proposition
The set of strings 𝕊 is countably infinite. That is 𝕊 ∼ ℕ.

166 CHAPTER 4. THE UNCOUNTABLE

Proof
We will start by choosing a standard way of ordering the symbols in the alphabet
𝔸—an alphabetical order for individual symbols. This amounts to choosing a num-
ber for each symbol, which means we have a function 𝑑 ∶ 𝔸 → {0, 1, …, 𝑁 − 1},
where 𝑁 is the number of symbols in 𝔸 (which is a finite set).

Next we will recursively define a function 𝑓 ∶ 𝕊 → ℕ, which says what position in
the infinite list each string gets. We can do it like this:

𝑓() = 0
𝑓(𝑠, 𝑎) = 𝑁 ⋅ 𝑓(𝑠) + 𝑑(𝑎) + 1 for each string 𝑠 and symbol 𝑎

Now we just need to prove that 𝑓 is one-to-one. We can do this by also defining
an inverse function for 𝑓 . This will be a “decoder” function 𝑔 ∶ ℕ → 𝕊 that takes
each number to the string that it encodes.

We’ll define the function 𝑔 recursively.6 For the base case, clearly 𝑔(0) should be
the empty string. For the recursive part, we’ll need a bit of simple arithmetic. The
Division Lemma (Exercise 4.3.1) tells us that we can divide the number 𝑛 − 1 by
the number 𝑁 (which is not zero), with some remainder. That is, there is a number
𝑞 (the quotient) and a number 𝑟 (the remainder) such that

𝑛 − 1 = 𝑁 ⋅ 𝑞 + 𝑟

and 𝑟 < 𝑁 . Furthermore, these numbers 𝑞 and 𝑟 are unique. The quotient 𝑞 is
guaranteed to be smaller than 𝑛. (Since 𝑁 ≥ 1 and 𝑟 ≥ 0, it follows that 𝑁⋅𝑞+𝑟 ≥ 𝑞,
and this is equal to 𝑛 − 1.) That means we can assume we already know how to
decode 𝑞 for our recursive definition. So we can let

𝑔(𝑛) = 𝑑−1(𝑟) ⊕ 𝑔(𝑞)

where 𝑑−1 ∶ {0, …, 𝑛 − 1} → 𝔸 is the inverse function of 𝔸: that is, 𝑑−1(𝑟) is the
𝑟th symbol in the alphabet.

Now we have to prove that 𝑔(𝑓(𝑠)) = 𝑠 for each string 𝑠, by induction on strings.
For the base case, it is clear from the definitions that 𝑔(𝑓()) = 𝑔(0) = (). For the
inductive step, let 𝑠 be any string, let 𝑎 be any symbol, and suppose that 𝑔(𝑓(𝑠)) = 𝑠.
Then

𝑓(𝑎 ⊕ 𝑠) = 𝑁 ⋅ 𝑓(𝑠) + 𝑑(𝑎) + 1
6The alert reader will notice that this definition uses strong recursion on numbers.

TODO. Explain.

4.4. FINITE SETS* 167

If we divide 𝑁 ⋅ 𝑓(𝑠) + 𝑑(𝑎), by 𝑁 , the (unique) quotient and remainder are 𝑓(𝑠)
and 𝑑(𝑎). So by the definition of 𝑔, we have

𝑔(𝑓(𝑎 ⊕ 𝑠)) = 𝑔(𝑁 ⋅ 𝑓(𝑠) + 𝑑(𝑎) + 1) = 𝑑−1(𝑑(𝑎)) ⊕ 𝑔(𝑓(𝑠))

Furthermore, 𝑑−1(𝑑(𝑎)) = 𝑎 and by the inductive hypothesis 𝑔(𝑓(𝑠)) = 𝑠. So this
simplifies to 𝑎 ⊕ 𝑠, as we intended.

That much shows that 𝕊 is countable. We have already shown that 𝕊 is infinite, and
thus 𝕊 is countably infinite. □

The next thing we’ll do is show that the string representation for pairs of numbers
that we discussed in Section 4.2 is unique. This will also introduce some of the basic
machinery wewill use for more complicated string representations and parsing facts
in Section 3.3 and Section 6.4.

One further detail is to check some facts we took for granted about breaking strings
into lines.

4.3.3 Exercise
There is a function line ∶ 𝕊 → 𝕊 × 𝕊 such that for each pair of strings 𝑠 and 𝑡
such that 𝑠 does not contain any newlines, and 𝑡 either is empty or begins with a
newline,

line(𝑠 ⊕ 𝑡) = (𝑠, 𝑡)

Hint. Compare Lemma 3.3.7 for “tokenizing” strings.

4.3.4 Exercise
There is a function lines ∶ 𝕊 → 𝕊∗ such that, for any strings 𝑡1, …, 𝑡𝑛 which do
not contain any newline symbols,

lines(𝑡1 ⊕ newline⊕⋯ ⊕ newline 𝑡𝑛) = (𝑡1, …, 𝑡𝑛)

4.4 Finite Sets*

In Section 4.2, we relied on a basic fact about finite sets, which we have not yet
proved (Proposition 4.2.9). Recall this definition:

4.4.1 Definition
A set of numbers 𝑋 ⊆ ℕ is bounded iff there is some number 𝑛 ∈ ℕ such that
𝑥 ≤ 𝑛 for every 𝑥 ∈ 𝑋.

168 CHAPTER 4. THE UNCOUNTABLE

4.4.2 Proposition
For any set 𝐴, 𝐴 is finite iff 𝐴 has the same number of elements as some bounded
set of numbers: that is, there is some bounded set 𝑋 ⊆ ℕ such that 𝐴 ∼ 𝑋.

Let’s start with something more basic. The finite set {Silver Lake,Echo Park}
doesn’t just have finitely many elements; it has two elements. We can count them.
What this looks like is we point to Silver Lake and say “one,” and then we point
to Echo Park and say “two.” When we do this, we are demonstrating that there
is a one-to-one correspondence between {Silver Lake,Echo Park} and the set of
numbers {1, 2}. Since our counting numbers start from zero, though, for official
purposes it’s a little more convenient to do things in terms of a correspondence with
the set {0, 1}.

4.4.3 Definition
A set 𝐴 has 𝑛 elements iff 𝐴 has the same number of elements as the set of numbers
less than 𝑛: that is,

𝐴 ∼ {𝑘 ∈ ℕ ∣ 𝑘 < 𝑛}

In Section 4.1, we defined an infinite set as one that has the “Hilbert’s Hotel” prop-
erty: an infinite set is the same size as one of its proper subsets. Putting that the
other way around, a finite set was defined to be one that doesn’t have the “Hilbert’s
Hotel” property. But now we want to show something else: a finite set is one that
has some finite number of elements.

4.4.4 Exercise
For each number 𝑛, the set of numbers

{𝑘 ∈ ℕ ∣ 𝑘 < 𝑛}

is finite.

Hint. This is kind of tricky! Use induction. Use the fact that 𝑘 < 𝑛 + 1 iff either
𝑘 < 𝑛 or 𝑘 = 𝑛. So if there were a “Hilbert’s hotel” function 𝑓 for the numbers
less than 𝑛 + 1, this could also be used to build a “Hilbert’s hotel” function 𝑔 for
the numbers less than 𝑛. The key trick is to say what 𝑔(𝑘) should be in the case
where 𝑓(𝑘) = 𝑛 + 1.

4.4.5 Exercise
For any sets 𝐴 and 𝐵 such that 𝐴 ∼ 𝐵, if 𝐴 is infinite then 𝐵 is infinite.

4.4. FINITE SETS* 169

4.4.6 Exercise
For any set 𝐴 and number 𝑛 ∈ ℕ, if 𝐴 has 𝑛 elements, then 𝐴 is finite.

4.4.7 Exercise
Any set that has an infinite subset is infinite.

Hint. If 𝐴 ⊆ 𝐵 and you have a “Hilbert’s hotel” function from 𝐴 to 𝐴, you can
extend this function to define a “Hilbert’s hotel” function from 𝐵 to 𝐵.

4.4.8 Exercise
For any set 𝐴, if ℕ ≲ 𝐴, then 𝐴 is infinite.

Recall that Proposition 4.2.8 said that for any unbounded set of numbers 𝑋 ⊆ ℕ,
we have 𝑋 ∼ ℕ. In Section 4.2 we gave the basic idea of the proof: we can define
a one-to-one correspondence between 𝑋 and ℕ by mapping the number zero to the
smallest element of 𝑋, one to the next smallest, two to the next smallest after that,
and so on. Let’s make that argument more precise now.

Proof of ?? 4.2.8
Let 𝑋 be an unbounded set of numbers. We will start by recursively defining a
function 𝑓 ∶ ℕ → 𝑋∗, which intuitively will take each number to the sequence of
the 𝑛 smallest elements of 𝑋. Then we will use that function to officially define our
one-to-one correspondence between 𝑋 and the set of all numbers.

For the base case, let 𝑓0 = (), the empty sequence.

For the recursive step, let 𝑛 be any number, and suppose that 𝑓𝑛 is some finite se-
quence of elements of 𝑋. Then, since 𝑋 is unbounded, there must be some number
in 𝑋 which is strictly greater than every element of 𝑓𝑛: otherwise, some element of
𝑓𝑛 would be an upper bound for 𝑋. (This is intuitively clear, but we could argue for
it rigorously using a proof by induction on sequences.) The Least Number Property
implies that, since the set of elements of 𝑋 −elem 𝑓𝑛 is not empty, it has a smallest
element. That is, there is some number 𝑥 ∈ 𝑋 which is the next number in 𝑋 after
all of the elements of the sequence 𝑓𝑛: call this number 𝑥. We will let 𝑓(𝑛 + 1) be
the extended sequence 𝑥, 𝑓𝑛, adding 𝑥 on to the sequence.

Now, for every number 𝑛, let 𝑔𝑛 be the first element in the non-empty sequence
𝑓(𝑛 + 1). We will check that 𝑔 is a one-to-one correspondence between ℕ and 𝑋.

First, 𝑔 is one-to-one. In fact, it is clear from the definitions that for any number 𝑛,
𝑔(𝑛) < 𝑔(𝑛+1). This implies (by induction) that for any numbers 𝑘 < 𝑛, 𝑔(𝑘) < 𝑔(𝑛),
and so in particular 𝑔(𝑘) and 𝑔(𝑛) are distinct.

170 CHAPTER 4. THE UNCOUNTABLE

Second, 𝑔 is onto. Another inductive argument shows that for each number 𝑛 ∈ ℕ,
there is some number 𝑚 such that every element of 𝑋 less than 𝑛 is an element of the
sequence 𝑓𝑚. (Exercise: check this. For the inductive step, consider separately the
cases where 𝑛 + 1 ∈ 𝑋 or 𝑛 + 1 ∉ 𝑋.) Furthermore, it is clear from the definitions
that if 𝑥 is in 𝑓𝑚, then there is some number 𝑘 ≤ 𝑚 such that 𝑥 = 𝑔𝑘. It follows
that every element of 𝑋 is in the range of 𝑔. □

4.4.9 Exercise
Use the facts above to complete the proof of Proposition 4.4.2: a set is finite iff
it has the same number of elements as some bounded set of numbers.

The things we have shown in this section give us three different perspectives on
infinite sets, which are all equivalent to one another.

4.4.10 Exercise
For any set 𝐴, the following are equivalent:

(a) 𝐴 is infinite: there is a one-to-one correspondence between 𝐴 and a proper
subset of 𝐴;

(b) There is no number 𝑛 such that 𝐴 has 𝑛 elements.

(c) ℕ ≲ 𝐴: there is a one-to-one function from ℕ to 𝐴.

We also now have a nice way of thinking about countably infinite sets. A set is
countable iff it has no more elements than the natural numbers; it is infinite iff it has
at least as many elements as the natural numbers; and it is countably infinite iff it
has exactly as many elements as the natural numbers. In short, for any set 𝐴:

• 𝐴 is countable iff 𝐴 ≲ ℕ;
• 𝐴 is infinite iff ℕ ≲ 𝐴;
• 𝐴 is countably infinite iff 𝐴 ∼ ℕ.

4.5 Uncountable Sets

So far we have considered how it is possible to compare the sizes of infinite sets,
using one-to-one correspondences. We have also considered a bunch of countably
infinite sets, which all have the same number of elements as there are counting
numbers. These include the set of numbers ℕ itself (obviously), any infinite subset
of ℕ, as well as the set of strings 𝕊, the set of pairs of numbers ℕ × ℕ, and the set
of finite sequences of strings 𝕊∗. We can also use similar methods to show many

4.5. UNCOUNTABLE SETS 171

other sets are countable: for example, 𝕊 ∪ ℕ, 𝕊 × (ℕ∗ × 𝕊), the set of finite sets of
strings, the set of pairs of a number and a finite set of numbers, etc. As we said, any
set of things that can be written down, in principle, using finite strings of symbols,
is a countable set.

So you might wonder, does this include all of the infinite sets? Are all infinite sets
the same size? We know that there aren’t any infinite sets that are smaller than the
set of numbers. But are there infinite sets which are bigger?

4.5.1 Definition
For any sets 𝐴 and 𝐵, we say 𝐵 has (strictly) more elements than 𝐴, abbreviated
𝐴 < 𝐵, iff 𝐴 ≲ 𝐵 and 𝐴 ≁ 𝐵: that is, 𝐵 has at least as many elements as 𝐴, but not
the same number of elements.

We have to be careful about this definition. Here are two other things which you
might think were right in general, based on your experience with finite sets. You
might be tempted to think that ℕ, the numbers starting from zero, has strictly more
elements than ℕ − {0}, the numbers starting from one. But that’s not right—in the
sense of “number” we are talking about right now, these two sets have the same
number of elements. As “Hilbert’s hotel” shows, there is a one-to-one correspon-
dence between them. More generally, you might be tempted by this thought:

• Wrong. If there is a one-to-one correspondence between 𝐴 and a proper
subset of 𝐵, then 𝐴 < 𝐵.

• Wrong. If there is a function from 𝐴 to 𝐵 which is one-to-one but not onto,
then 𝐴 < 𝐵.

Both of these claims are true if 𝐴 and 𝐵 happen to be finite sets, but they aren’t
true in general. Your intuitions probably need some retraining when it comes to
counting the elements of infinite sets.

If you can easily come up with a function from 𝐴 to 𝐵 that is one-to-one, but not
onto, then it’s very tempting to conclude that 𝐴 < 𝐵. But infinite sets don’t work
that way! Finding a way of mapping 𝐴 into 𝐵 with some stuff left over does tell
you that 𝐴 ≲ 𝐵—that 𝐵 has at least as many elements as 𝐴—but it could still turn
out that there is some other way of mapping 𝐴 into 𝐵 which doesn’t leave anything
left over, in which case they would be the same size after all. To show that 𝐴 < 𝐵,
you have to prove that no function from 𝐴 to 𝐵 is a one-to-one correspondence.

Now back to our question: are there bigger infinities? In fact, we have basically
already answered this. In Section 1.5, we considered Russell’s Paradox, which

172 CHAPTER 4. THE UNCOUNTABLE

showed that not just any things can be collected into a set. (In particular, there is no
set containing all sets.) We also considered how the argument can be generalized
to prove Cantor’s Theorem (Exercise 1.5.3):

For any set 𝐴, there is no onto function from 𝐴 to 𝑃 𝐴.

So we can draw the following conclusions.

4.5.2 Exercise (Cantor’s Theorem Version 2)
For any set 𝐴, there are strictly more subsets of 𝐴 than elements of 𝐴. That is:

𝐴 < 𝑃 𝐴

4.5.3 Definition
A set 𝐴 is uncountable iff 𝐴 is not countable. Equivalently: ℕ < 𝐴.

4.5.4 Exercise
(a) The set of all sets of natural numbers, 𝑃 ℕ, is uncountable. (Cantor’s The-

orem Version 3)

(b) If 𝐴 is any infinite set, then 𝐴 has uncountably many subsets: that is, 𝑃 𝐴
is uncountable.

4.5.5 Exercise
(a) If 𝐴 is infinite and 𝐵 has at least two elements, then the set of all functions

from 𝐴 to 𝐵 is uncountable.

(b) For any set𝐴, if𝐴 has at least two elements, the set of all infinite sequences
in 𝐴 (that is, 𝐴ℕ) is uncountable.

4.5.6 Technique (Counting Arguments)
The natural numbers are an infinite yardstick for measuring sets. Whether a set is
countable or uncountable provides a good first approximation of what that set is
like. One common way we use this is based on a very simple principle: if 𝐴 is
countable, and 𝐵 is uncountable, it follows that 𝐴 and 𝐵 are not the same set. In
particular, If 𝐴 is a countable subset of 𝐵, and 𝐵 is uncountable, then it follows
that 𝐵 has elements besides those in 𝐴. (Indeed, 𝐵 has uncountably many elements
which aren’t in 𝐴.) So a handy trick for showing that there are 𝐵’s that aren’t 𝐴’s
is to show that 𝐴 is countable, and 𝐵 is uncountable.

This is a more specific version of the general kind of counting argument we intro-

4.5. UNCOUNTABLE SETS 173

duced in Section 1.5.

4.5.7 Exercise
Suppose that 𝐿 is some set of strings, which we’ll call descriptions. (For ex-
ample, 𝐿 could consist of strings that make grammatical English noun-phrases,
like the set of all prime numbers.) Suppose furthermore that there is a
function 𝑑 that takes each description in 𝐿 to a set of numbers: for any string 𝑠,
we’ll call 𝑑𝑠 the set described by 𝑠. Show that there are sets of numbers which
are not described by any description in 𝐿.

4.5.8 Exercise
Let 𝐿 be a signature, and let 𝑆 be an 𝐿-structure with domain 𝐷. Recall from
Definition 3.5.11 that a function 𝑓 ∶ 𝐷 → 𝐷 is simply definable iff there is some
term 𝑡(𝑥) that has 𝑓 as its extension. (That is, ⟦𝑡⟧𝑆𝑑 = 𝑓(𝑑) for every object
𝑑 ∈ 𝐷.) Use a counting argument to show that, if 𝐷 is infinite, then there is
some function 𝐷 → 𝐷 which is not simply definable in 𝑆.

4.5.9 Exercise
Let 𝐼 be the set of real numbers between 0 and 1. We won’t need to worry too
much about what real numbers are like, but here is one fact about them:
we can represent a real number using an infinite sequence of digits. Let 𝐷 be
the set of base 10 digits, 𝐷 = {0, 1, …, 9}. The standard way of representing
numbers with sequences of decimal digits isn’t quite one-to-one: for example,
0.4999… and 0.5 are both the same number. In order to get a one-to-one rep-
resentation, we’ll need to block this case. So let 𝑋 be the set of all infinite
sequences of digits that eventually end in just 9’s. This is the key fact that you
can take for granted about the decimal representation of real numbers:

There is a one-to-one correspondence between 𝐷ℕ − 𝑋 and 𝐼 .
To be explicit, 𝑋 is the set

𝑋 = {𝑠 ∈ 𝐷ℕ ∣ for some 𝑛 ∈ ℕ, for every 𝑘 > 𝑛, 𝑠(𝑘) = 9}

There is also a division function. This function takes each ordered pair of natural
numbers (𝑚, 𝑛) ∈ ℕ × ℕ such that 𝑚 < 𝑛 to a real number in 𝐼 (namely, the
number 𝑚/𝑛). A real number in 𝐼 is called rational iff it is in the range of this
division function. Otherwise, it is called irrational.
Prove that there are uncountably many irrational numbers.

174 CHAPTER 4. THE UNCOUNTABLE

Notice that the same argument that tells us that there are more sets of numbers than
there are numbers (ℕ < 𝑃 ℕ) can be applied again. There are more sets of sets of
numbers than there are sets of numbers: that is, 𝑃 ℕ < 𝑃 (𝑃 ℕ). And we can keep
on going:

ℕ < 𝑃 ℕ < 𝑃 𝑃 ℕ < 𝑃 𝑃 𝑃 ℕ < ⋯
So just starting with one infinite set ends up introducing us to infinitely many differ-
ent sizes of infinity.

In fact, this ladder of infinite sets only reaches up to some of the lowest levels of
abstract reality. All of these infinitely many infinite sets are puny compared to some
of the vast collections that mathematical set theory has to offer. In this course we’ll
explore some “small” infinite sets, but we won’t climb very high at all into Plato’s
heaven. (For a glimpse of some of the upper reaches, see Chapter 10.)

Another very interesting question is whether there are other sizes of infinity in be-
tween the rungs in this ladder we get by taking sets of sets of sets … The claim that
there are no infinite sets intermediate in size between ℕ and 𝑃 ℕ is called Cantor’s
Continuum Hypothesis. The question of whether it is true is a famous open ques-
tion. One reason the question is so striking is that as it turns out, we know that it
is impossible to answer this question using standard mathematical methods. See
Chapter 10 for more about this.

4.6 Induction and Infinity*

In Chapter 2, we considered a fundamental infinite set—the set of numbers—and
a second fundamental way of producing infinite sets, by forming finite sequences.
Each of those ideas had an axiom that went with it: the Axiom of Numbers and the
Axiom of Sequences. In this chapter we have considered a more general perspective
on infinity, based on Hilbert’s hotel. This suggests an alternative, more abstract
axiom we might have used instead.

4.6.1 Axiom of Infinity
There is an infinite set.

It’s an important foundational fact that we don’t really need to assume all three of
these as axioms: in fact, any one of them is strong enough to prove the other two as
consequences.

4.6. INDUCTION AND INFINITY* 175

4.6.2 Exercise
(a) Explain why the Axiom of Numbers implies the Axiom of Infinity.
(b) Explain why the Axiom of Sequences implies the Axiom of Infinity.

The other direction—from a general infinite set to numbers or sequences—is not
quite so straightforward.

4.6.3 Proposition
The Axiom of Infinity implies the Axiom of Numbers.

Proof
Recall first what the Axiom of Numbers says: that there is some set we call “ℕ”,
which has an element we can call “zero”, and a function we can call “successor”,
where together these have the Inductive and Injective Properties.

Suppose that the Axiom of Infinity is true. This means that there is a set 𝐴 and a
function 𝑓 ∶ 𝐴 → 𝐴 which is one-to-one but not onto. Since 𝑓 is not onto, there
is some element 𝑧 ∈ 𝐴 which is not in the range of 𝑓 . Then we can define the set
of “numbers” to be consist of 𝑧, 𝑓𝑧, 𝑓(𝑓𝑧), and so on. To make this precise, we
define a set 𝑁 recursively.

𝑧 ∈ 𝑁 𝑛 ∈ 𝑁
𝑓𝑛 ∈ 𝑁

Then we will let the “successor” function be the restriction of 𝑓 to 𝑁 . That is,
define a function 𝑠 ∶ 𝑁 → 𝑁 :

𝑠𝑛 = 𝑓𝑛 for each 𝑛 ∈ 𝑁

We now just have to check that 𝑁 , 𝑧, and 𝑠 have the Inductive and Injective Proper-
ties. The recursive definition of 𝑁 automatically gives us this inductive property:

For any set 𝑋 ⊆ 𝐴, if

(a) 𝑧 ∈ 𝑋, and
(b) for any 𝑛 ∈ 𝑋, we also have 𝑓𝑛 ∈ 𝑋

then 𝑁 ⊆ 𝑋.

The Inductive Property for 𝑁, 𝑧, 𝑠 follows from this immediately. (In the case where
𝑛 ∈ 𝑋 ⊆ 𝑁 , 𝑠𝑛 and 𝑓𝑛 are the same thing.) The Injective Property is also straight-
forward. (Check this!) □

176 CHAPTER 4. THE UNCOUNTABLE

This proof raises a philosophical question. We came up with a set of “numbers”
from some arbitrary infinite set. It could have been a set of strings, or sets, or
space-time points, or whatever. But it would be surprising if numbers turned out
to be the same thing as strings, or sets, or points. And surely numbers can’t be
all of these things. If the number zero is the string ABC, it can’t also be the string
CBA, since these strings are different. But we could have picked either one of these
strings as our “zero” element in the proof. So this abstract proof can’t really have
shown us what the numbers really are. Even though we have “reduced” the Axiom
of Numbers to the Axiom of Infinity, we have not really given what philosophers
would call a reduction of the numbers to something else. But the Axiom ofNumbers
was not a claim about what the numbers really are. It was a claim about the existence
of a set ℕ, an element 0, and a function suc with the right properties. We have now
proved that this existence claim follows from existence of any infinite set at all.
Furthermore, this existence claim is enough for our technical purposes. Whatever
the numbers may be, as long as they have the Inductive and Injective Properties,
that is all we need to prove anything else that has to do with numbers in this text.
So for our purposes, we don’t need to answer the philosophical question about the
true nature of numbers. We just need to know there is something or other that has
the structure of numbers. That isn’t an answer to the philosophical question of what
we are really talking about wide open. This is a deep issue. But it at least gives us
an excuse to keep going without an answer to that question.

This move is characteristic of modern mathematics, as a departure from older ways
of thinking. Once upon a time we tried to put the subject on firm metaphysical
foundations, by giving a reductive account of the ontology of abstract mathemati-
cal objects. Nowadays, we generally settle instead for putting the subject on firm
methodological foundations, by giving a structural account of the basic properties
we need our abstract mathematical objects to have, and then convincing ourselves
that there is something or other with the right structure.

4.6.4 Proposition
The Axiom of Numbers implies the Axiom of Sequences.

Proof
Let 𝐴 be any set. We want to show that there are some things which have the right
structural properties for finite sequences.

There is a set 𝑆, an element 𝑒 ∈ 𝑆, and a function app ∶ 𝑆 × 𝐴 → 𝑆
which have the Inductive and Injective Properties for Sequences.

Here is one way to do that. We can completely describe the sequence (Al, Bea,

4.6. INDUCTION AND INFINITY* 177

Cece) by saying

Element 0 is Al, element 1 is Bea, element 2 is Cece, and that is all.”

(We’re counting elements from zero just for convenience.) The sequence is
completely described by specifying a certain function from the first three numbers
{0, 1, 2} to the set of elements, which says which element appears at each position
in the sequence:

[0 ↦ Al, 1 ↦ Bea, 2 ↦ Cece]

We can do the same thing with any finite sequence.

[TODO. I should officially introduce partial functions in chapter 1.]

Let 𝑆 be the set of all partial functions 𝑓 from ℕ to 𝐴 such that the domain of 𝑓 is
the set {𝑘 ∈ ℕ ∣ 𝑘 < 𝑛} for some 𝑛 ∈ ℕ. Let 𝑒 ∈ 𝑆 be the function with the empty
domain. And for 𝑓 ∈ 𝐹 and 𝑎 ∈ 𝐴, where the domain of 𝑓 is {𝑘 ∈ ℕ ∣ 𝑘 < 𝑛}, let
app(𝑓 , 𝑎) be the function in 𝑆 with domain {𝑘 ∈ ℕ ∣ 𝑘 < suc 𝑛} such that

app(𝑓 , 𝑎)(𝑘) = 𝑓(𝑘) for every 𝑘 < 𝑛
app(𝑓 , 𝑎)(𝑛) = 𝑎

We just need to prove that 𝑆, 𝑒, app have the Inductive and Injective Properties for
Sequences.

The Injective Property is straightforward. (Exercise.)

To prove the Inductive Property for Sequences, suppose that 𝑋 ⊆ 𝑆 is a set such
that 𝑒 ∈ 𝑋 and for every 𝑠 ∈ 𝑋 and 𝑎 ∈ 𝐴, app(𝑠, 𝑎) ∈ 𝑋. Let 𝑆𝑛 be the set of all
functions from {𝑘 ∈ ℕ ∣ 𝑘 < 𝑛} to 𝐴. Then we can use induction on numbers to
prove:

For every 𝑛 ∈ ℕ, 𝑆𝑛 ⊆ 𝑋.

(This is also an exercise.) Since every element of 𝑆 is in 𝐴𝑛 for some 𝑛 ∈ ℕ, we
are done. □

A similar philosophical issue arises for sequences as for numbers. In this case,
our proof did give us a way of “constructing” sequences, as certain functions from
numbers. But this is not the only way we could have done it, and it seems a bit weird
and arbitrary to suppose that sequences really are certain functions. Once again,
while questions like these about the nature of abstract objects are philosophically
important, fortunately we don’t have to answer them in order to use the Axiom of
Sequences. Again, all we will really care about is that there is some set 𝕊 with the

178 CHAPTER 4. THE UNCOUNTABLE

right structural features. It won’t really matter what that set’s elements really are, as
far as our proofs go. So, for the purposes of this text, we can duck the ontological
question.

4.6.5 Exercise
Put the pieces together to show that the Axiom of Numbers, the Axiom of Se-
quences, and the Axiom of Infinity are equivalent.

We can use the ideas from Section 3.4 to present another general way of thinking
about these infinity axioms. We discussed there that, in general, the inductive and
injective properties for an𝐿-structure𝑆 are equivalent to a “universal property”: for
every 𝐿-structure 𝑇 , there is exactly one homomorphism 𝑟 ∶ 𝑆 → 𝑇 . So another
way of stating the Axiom of Numbers or the Axiom of Sequences is as the existence
of an appropriate universal structure. But now we can conclude something more
general still:

4.6.6 Exercise
The Axiom of Infinity implies that for any signature 𝐿, there exists a universal
𝐿-structure. That is, there is an 𝐿-structure 𝑆 such that for any 𝐿-structure 𝑇 ,
there is a unique homomorphism 𝑟 ∶ 𝑆 → 𝑇 .

Hint. Recall that we already proved in Section 3.3;Section 3.4 that the term struc-
ture 𝕋𝐿 has the Inductive and Injective Properties for Terms, and that these imply
the Recursion Theorem for Terms. Furthermore, all we needed to prove these
things was the existence of strings, which follows from the Axiom of Sequences.

This gets us all sorts of “inductive structures” in one fell swoop, including numbers,
sequences, trees, and so on. We just have to choose appropriate signatures.

4.7 Review

Key Techniques

• One way to show that there is some element of 𝐴 which is not an element of
𝐵 is to use a counting argument: show that 𝐴 has strictly more elements
than 𝐵 (𝐴 > 𝐵). One way to do this is to show that 𝐴 is uncountable, and 𝐵
is countable. (Technique 4.5.6)

Key Concepts and Facts

• We can compare the sizes of sets:

4.7. REVIEW 179

– 𝐴 has the same number of elements as 𝐵 (𝐴 ∼ 𝐵) iff there is a one-
to-one correspondence between 𝐴 and 𝐵.

– 𝐵 has at least as many elements as 𝐴 (𝐴 ≲ 𝐵) iff there is a one-to-one
function from 𝐴 to 𝐵.

– 𝐵 has strictly more elements than 𝐴 (𝐴 < 𝐵) iff 𝐴 ≲ 𝐵 and 𝐴 ≁ 𝐵.

• Cantor’s Theorem (Version 2). Every set has strictly more subsets than it
has elements. That is, 𝐴 < 𝑃 𝐴.

• An infinite set is one with a “Hilbert’s hotel” function: intuitively, you can
rearrange the elements of the set in a way that leaves some extra room left
over. More officially, if 𝐴 is an infinite set, there is a function from 𝐴 to 𝐴
which is one-to-one but not onto.

– The set ℕ of all numbers is infinite. So is the set 𝕊 of all strings.

• A countable set has no more elements than there are natural numbers. Some
infinite sets are countable, and some infinite sets are uncountable.

• The following sets are countable:

– ℕ, the set of all numbers
– 𝕊, the set of all strings
– For countable 𝐴 and 𝐵, the set 𝐴 × 𝐵 of ordered pairs of elements of 𝐴

and 𝐵.
– For countable 𝐴, the set 𝐴∗ of all finite sequences of elements of 𝐴.

• The following sets are uncountable:

– For any infinite set 𝐴, the set 𝑃 𝐴 of all subsets of 𝐴. In particular, 𝑃 ℕ
(the set of all sets of numbers) and 𝑃 𝕊 (the set of all sets of strings).

– 𝐴ℕ, the set of all infinite sequences of elements of 𝐴, as long as 𝐴 has
at least two elements

– For 𝐴 infinite and 𝐵 containing at least two elements, the set 𝐴 → 𝐵 of
all functions from 𝐴 to 𝐵.

• In any infinite structure, there are some functions (uncountablymany!) which
are not the extension of any term. (Exercise 4.5.8)

180 CHAPTER 4. THE UNCOUNTABLE

Chapter 5

Truth and Consequence

What then is truth? It is the notion of existence
applied to something that exists and that of
non-existence with respect to something that does not
exist. Grasping what is as what is, there is truth, the
“as it is”, the “uncontroverted.” Likewise, grasping
what is not as being what is not, there is truth, the “as
it is”, the “uncontroverted.”

Vātsyāyana, Nyāyasutra Bhāshya (Commentary on
the Principles of the Nyaya School of Logic, 2nd or

3rd century CE(?))

In this chapter we return to the project of carefully describing the relationship be-
tween language and the world. In Chapter 3 we described some very simple lan-
guages. These languages included terms which we can use to refer to particular
objects, or to define functions in a structure using variables. Now we’ll build up a
more sophisticated language that we can use to say things about these objects and
functions and how they are related to each other—using sentences.

In particular, we’ll be studying a first-order language (with function symbols and
identity). What this means is that we have a way of making generalizations about
all of the objects in an entire structure, using “for all” statements. (“First-order”
contrasts with “higher-order” languages, which can also say things about all sets or
properties of objects in a structure. See Chapter 9.)

Just like with terms, when it comes to sentences there are two main things we need
to look at. The first thing is the internal structure of the language: the way its simple

181

182 CHAPTER 5. TRUTH AND CONSEQUENCE

pieces can be put together to produce complicated expressions. This is called syntax.
The second thing is the way the language is related to the world, and in particular
the way that sentences can be true or false. This is called semantics.

Once we have looked at these two aspects of the first-order language, we can ap-
ply them to look at the logic of this language, which is about special relationships
between different sentences. For example, we can ask whether some sentences are
inconsistent with each other, or whether a conclusion follows from some premises.

Nowadays first-order logic is a standard part of the philosopher’s toolkit (as well
as the mathematician’s toolkit, the linguist’s toolkit, and the computer scientist’s
toolkit). You can do a lot with it: it’s a pretty powerful tool. But it has its limits. In
later chapters, we will examine some things it can’t do.

5.1 Syntax

I hope the language of first-order logic is already familiar to you (though some of the
details in this section will probably be new). Here are some examples of sentences
in first-order logic (with identity) in the language of arithmetic.
∀x ∀y ∀z (x + (y + z) = (x + y) + z)
∃x (∀y (x + y = y) & ∀y (y + x = y))
∀x ∀y ∃z (x + z = y)

Intuitively, the first sentence says that addition is associative, in the sense that the
order of parentheses doesn’t matter. The second says there is an additive identity—
something which makes no difference when added to anything—that is, zero. The
third says that any two things have a difference, which can be added to one to reach
the other. (This principle is false about the natural numbers, because if 𝑦 is smaller
than 𝑥 then there is no natural number you can add to 𝑥 to reach 𝑦. But the principle
is true about the integers, which include negative numbers.)

These examples are all sentences, but they have as part of their internal structure
things which aren’t sentences, like
∀y (x + y = y)

Here x is what we call a free variable, which doesn’t correspond to any quantifier
within the expression. A “sentence fragment” like this is called a formula.

We have already defined the syntactic structure of terms. These are an important
building block for making sentences, so let’s start by refreshing our memory of this
definition. Let 𝐿 be a signature.

5.1. SYNTAX 183

For each name 𝑐 in 𝐿, we have this rule:

𝑐 is an 𝐿-term

For each one-place function symbol 𝑓 in 𝐿, we have this rule:

𝑎 is an 𝐿-term
𝑓(𝑎) is an 𝐿-term

And for each two-place funciton symbol 𝑓 in 𝐿, we have this rule:

𝑎 and 𝑏 are 𝐿-terms
𝑓(𝑎,𝑏) is an 𝐿-term

Remember also that this definition works just the same way if 𝐿 happens to be a
signature that includes variables.

Now we’ll give a recursive definition for formulas.

5.1.1 Definition
We will recursively define “𝐴 is a first-order 𝐿-formula”.
Let 𝐿 be any signature 𝐿. First, there are three rules for putting terms together to
build the simplest formulas—our “base cases”. (These are sometimes called atomic
formulas.) For any 𝐿-terms 𝑎 and 𝑏, we have this rule:

𝑎 = 𝑏 is an 𝐿-formula

For each one-place 𝐿-predicate 𝐹 , and 𝐿-term 𝑎, we also have this rule:

𝐹(𝑎) is an 𝐿-formula

And for each two-place 𝐿-predicate 𝑅 and 𝐿-terms 𝑎 and 𝑏, we have this rule:

𝑅(𝑎,𝑏) is an 𝐿-formula

(It’s easy, and standard, to generalize these rules to allow predicates with more than
two places. But we’ll stick to one and two, because that’s all we happen to need,
and it will keep our notation simpler.)

184 CHAPTER 5. TRUTH AND CONSEQUENCE

Next, we have two more rules for building up complex formulas from simpler for-
mulas.

𝐴 is an 𝐿-formula
¬𝐴 is an 𝐿-formula

𝐴 is an 𝐿-formula 𝐵 is an 𝐿-formula
(𝐴 & 𝐵) is an 𝐿-formula

Finally, there is onemore rule which is a littlemore complicated. Let 𝑥 be a variable.
We have this final quantifier rule:

𝐴 is an 𝐿(𝑥)-formula
∀𝑥 𝐴 is an 𝐿-formula

We will use the notation 𝔽𝐿 for the set of all 𝐿-formulas. Similarly, let 𝔽𝐿(𝑥) be the
set of all 𝐿(𝑥)-formulas, etc.

We call an 𝐿-formula a sentence when 𝐿 does not include any variables. (Since
there isn’t really an official distinction between variables and other names, this really
just means that we are not thinking of any of the names in 𝐿 as variables.)

Some notes about this definition:

1. As with terms, while we need official rules, in practice we often take some no-
tational liberties when we are writing down formulas—just like we did with
terms. Wemay drop parentheses or modify spacing a bit, if that makes things
more reader-friendly. There is also a notational issue with relation symbols.
Normally we write some relation symbols, like ≤, in between the two terms
it applies to, as in 0 ≤ suc 0. But again, it is more convenient to only ever
do things one way in our official notation, and our official choice is “prefix”
notation. So again, officially, we would write that formula as ≤(0, suc(0)).
But we will hardly ever bother to be official.

2. Notice what’s going on in the last syntax rule, the rule for the quantifier ∀.
When we put ∀x in front of F(x), we take a formula F(x) that has a free vari-
able x in it to a sentence ∀x F(x), which has no free variables: the variable x
is bound. In general, the quantifier ∀x takes an 𝐿(x)-formula to an 𝐿-formula,
in which x is no longer available to use as a free variable. This also works

5.1. SYNTAX 185

if we have extra variables on the side. For example, the formula R(x,y) has
two free variables, x and y. But the quantified formula ∀y R(x,y) has just
one free variable, dangling loose: just x. In this case, we put ∀y in front of an
𝐿(x, y) formula, and get an 𝐿(x) formula. (Notice how this fits the pattern in
the general rule: if 𝐿′ is the signature 𝐿(x), then ∀y takes an 𝐿′(y)-formula
to an 𝐿′-formula.)

3. Another subtle thing to notice is that, even if a signature 𝐿 includes some
free variables, an 𝐿-formula doesn’t have to include all of the variables that
𝐿 gives it. So, for example, x ≤ x is a formula in 𝐿ℕ(x) (where 𝐿ℕ is the
language of arithmetic); but it is also a formula in 𝐿ℕ(x, y), or 𝐿ℕ(x, y, x₂),
or a signature with whatever extra variables you like, as long as x is included
in there.

4. One more thing to notice is that many standard connectives don’t appear in
these official formation rules, such as the conditional →, or the existential
quantifier ∃. That’s because we can define them up from the basic materials
in the definition. For example, later on we’ll define ∃x (x + x = x) to be
just a notational shortcut for the official formula ¬∀x ¬(x + x = x). We’ll
go over these abbreviations in the next section. It’s helpful to do things this
way, because it means that when we are proving things inductively about
formulas we only need to consider a small number of formation rules.

5.1.2 Example
The first-order language of arithmetic consists of the first-order formulas with
the signature of the language of arithmetic, 𝐿ℕ (namely, 0, suc, +, ⋅, and ≤).

The first-order language of strings consists of the first-order formulas with the
signature of the language of strings, 𝐿𝕊 (namely, ⊕, ≲, the name for the empty string
"", and the name 𝑐𝑎 for each symbol 𝑎 ∈ 𝔸 in the standard alphabet).

5.1.3 Example
Let 𝐿 be the signature containing a one-place function symbol f and a two-place
relation R. Use the definitions to show, step by step, that the following is a first-order
𝐿(z)-formula.
∀x (∀y y = z & R(f(x), z))

Proof
We will apply the formation rules for formulas one by one. This is a bit trickier
than you might expect.

186 CHAPTER 5. TRUTH AND CONSEQUENCE

First, y and z are both 𝐿(z, x, y)-terms. Remember that in general that any 𝐿-term
is also an term for any signature that expands 𝐿. So since y is an 𝐿(y)-term, it is
also an 𝐿(z, x, y)-term. (But why are we talking about this signature at all? You’ll
see.) So, using the identity rule for formulas:

1. y = z is an 𝐿(z, x, y)-formula.

Next, notice that 𝐿(z, x, y) is what you get if you add one variable, y, to the signature
𝐿(z, x). To put that another way, y = z is an 𝐿′(y)-formula, where 𝐿′ = 𝐿(z, x)
and y is a variable that does not appear in𝐿′. Thismeanswe can apply our quantifier
rule to conclude:

2. ∀y y = z is an 𝐿(z, x)-formula.

Similarly, f(x) and z are both 𝐿(z, x)-terms. Since R is an 𝐿-predicate, it is also
an 𝐿(z, x)-predicate. So we can apply the rule for two-place relations to conclude:

3. R(f(x), z) is an 𝐿(z, x)-formula.

Now we have two formulas with the same signature, so we can put them together
using the conjunction rule:

4. (∀y y = z & R(f(x), z)) is an 𝐿(z, x)-formula.

Finally, 𝐿(z, x) adds the variable x to the signature 𝐿(z). So we can use the quanti-
fier rule once again:

5. ∀x (∀y y = z & R(f(x), z)) is an 𝐿(z)-formula.

Notice how as we go, the free variables in signature are bound by quantifiers, one
by one, resulting in the end in a formula with fewer free variables. □

5.1.4 Exercise
Use the definitions to show, step by step, that the following is a formula in the
first-order language of strings, with the free variable x. (That is, it is an 𝐿𝕊(x)-
formula.)
∀y ∀z ¬(y ⊕ z = x & y = "A")

As with numbers, strings, and terms, formulas have an Inductive Property and an
Injective Property. The Inductive Property intuitively says that every formula can
be produced in at least one way from these rules, and the Injective Property intu-
itively says that every formula can be produced in at most one way from these rules.

5.1. SYNTAX 187

At this point, we won’t go through the fuss of being totally official about these prop-
erties. The thing that matters is that our two familiar friends—inductive proof and
recursive definition—also work for formulas. We’ll do some examples of induction
and recursion for formulas very soon.

(The Inductive Property for Formulas follows from our recursive definition of “for-
mula.” The Injective Property for Formulas ismore complicated to prove: wewould
have to prove another parsing theorem, like the one for terms in Section 3.3. This
parsing theoremwould show that our particular system of notation for writing down
formulas is not ambiguous: no two different ways of applying the rules ever produce
the same string by accident. Since this proof of the parsing theorem for formulas is
very similar to the analogous proof for terms, we won’t bother going into it.)

5.1.5 Exercise
Write out the Inductive Property and the Injective Property for Formulas, based
on the formation rules in Definition 5.1.1. (You can use the Inductive Property
and the Injective Property for terms as a model.)

In Section 3.5, we showed that each 𝐿-term is also an 𝐿(𝑥)-term, for any variable
𝑥. As an example of our new kind of induction, let’s prove the analogous fact for
formulas.

5.1.6 Example
For any signature 𝐿 and variable 𝑥 (not in 𝐿), every 𝐿-formula is an 𝐿(𝑥)-formula.

Proof
Since the recursive definition of formulas has six parts, so does this inductive proof.

1. Identity. Let 𝑎 and 𝑏 be 𝐿-terms. So they are also 𝐿(𝑥)-terms. Thus by the
identity rule, 𝑎 = 𝑏 is an 𝐿(𝑥)-formula.

The steps for one-place and two-place predicates go the same way as identity, so
we will skip them.

4. Negation. Let 𝐴 be an 𝐿-formula. Suppose for the inductive hypothesis that
𝐴 is an 𝐿(𝑥)-formula. Then by the negation rule, ¬𝐴 is also an 𝐿(𝑥)-formula.

5. Conjunction. Let 𝐴 and 𝐵 be 𝐿-formulas, and suppose for the inductive
hypothesis that 𝐴 and 𝐵 are also 𝐿(𝑥)-formulas. Then by the conjunction
rule, 𝐴 & 𝐵 is also an 𝐿(𝑥)-formula.

6. Quantification. Let 𝑦 be a variable, let 𝐴(𝑦) be an 𝐿(𝑦)-formula. We assume
for the inductive hypothesis that 𝐴(𝑦) is also an 𝐿(𝑦, 𝑥)-formula. (Notice—

188 CHAPTER 5. TRUTH AND CONSEQUENCE

we don’t assume it’s an 𝐿(𝑥)-formula! For the inductive hypothesis we’re
assuming the principle for formulas with a different signature.) Then by the
quantifier rule, ∀𝑦 𝐴(𝑦, 𝑥) is an 𝐿(𝑥)-formula. □

A free variable is like a hole in a sentence. One thing we often want to do is plug
a term into that hole, to see what the formula “says about” a certain thing. For
instance, take the formula
¬(x = 0) & ∀y ¬(x + y = y)

Intuitively this says, “𝑥 is not zero, and adding 𝑥 to anything never gives you the
same thing back”. We can plug the term suc 0 into the x slot, to get the sentence
¬(suc 0 = 0) & ∀y ¬(suc 0 + y = y)

which says: “one is not zero, and adding one to anything never gives you the same
thing back.” The basic idea is that each free occurrence of the variable x gets re-
placed with the term suc 0. This basically works just like it did with terms back in
Section 3.5.

As we did with terms, we will often use the notation 𝐴(𝑥) to emphasize that 𝐴 is a
formula with the signature 𝐿(𝑥), which includes 𝑥 as a free variable. (But in general,
𝐿 may also include other variables besides 𝑥. Also, remember that the variable 𝑥
isn’t required to appear in an 𝐿(𝑥)-formula.)

5.1.7 Definition
Let 𝐿 be a signature, let 𝐴(𝑥) be an 𝐿(𝑥)-formula (for some variable 𝑥 not already
in 𝐿), and let 𝑡 be an 𝐿-term. The substitution instance 𝐴(𝑡) is an 𝐿-formula which
is defined recursively as follows.

(𝑎 = 𝑏)(𝑡) = 𝑎(𝑡) = 𝑏(𝑡) for terms 𝑎(𝑥) and 𝑏(𝑥)
(𝑅(𝑎,𝑏))(𝑡) = 𝑅(𝑎(𝑡),𝑏(𝑡)) for terms 𝑎(𝑥) and 𝑏(𝑥)

(¬𝐴)(𝑡) = ¬𝐴(𝑡) for a formula 𝐴(𝑥)
(𝐴 & 𝐵)(𝑡) = 𝐴(𝑡) & 𝐵(𝑡) for formulas 𝐴(𝑥) and 𝐵(𝑥)

(∀𝑦 𝐴)(𝑡) = ∀𝑦 𝐴(𝑡, 𝑦) for an 𝐿(𝑥, 𝑦)-formula 𝐴(𝑥, 𝑦)

Notice that the notation 𝐴(𝑡) relies on the variable 𝑥 being made clear in context.
Occasionally we find ourselves in contexts where it is not very clear which variable
we are talking about; in that case, we can use the more explicit substitution notation
𝐴[𝑥 ↦ 𝑡] instead.
[TODO. Add this notation for terms, too.]

5.1. SYNTAX 189

5.1.8 Example
Let 𝐿 be the signature containing one two-place predicate R and one name c. Let
𝐹 (x, y) be the formula
∀z (¬R(z, x) & R(z, y))

Use the definition to find the substitution instance 𝐹 (x, c).

Proof
We will work our way up, starting from the atomic formulas. ¬R(z, x) is a
𝐿(x, y, z)-formula, and z and x are 𝐿(x, y, z)-terms. By the definition of substitu-
tion for terms, z[y ↦ c] is just z, and x[y ↦ c] is just x again. (These are also both
𝐿(x, z)-terms.) So, by the clause for predicates in the definition of substitution,

(R(z,x))[y ↦ c]  =  R(z,x)

Then by the negation clause,

(¬R(z,x))[y ↦ c]  =  ¬R(z,x)

Now we’ll work on R(z,y). Again, z[y ↦ c] is z. Also, by the definition of
substitution for terms, y[y ↦ c] is c. So by the predicate clause of the definition of
substitution,

(R(z,y))[y ↦ c]  =  R(z,c)

Putting this together and applying the conjunction clause, we get:

(¬R(z, x) & R(z, y))[y ↦ c]  =  (¬R(z, x) & R(z, c))

And this is an 𝐿(x, z)-formula. Finally, by the quantifier clause,

(∀𝑧 (¬R(z, x) & R(z, y)))[y ↦ c]  =  ∀𝑧 (¬R(z, x) & R(z, c)) □

5.1.9 Exercise
Let 𝐹 (x, y) be the following 𝐿𝕊(x, y)-formula (in the language of strings):
∀z (¬(z ≲ x) & ∀s ¬(y ⊕ s = x))

Use the definition to work out the substitution instance 𝐹 (𝑥, "" ⊕ 𝑥), step by
step.

190 CHAPTER 5. TRUTH AND CONSEQUENCE

5.1.10 Exercise
Let 𝐴 be an 𝐿-formula. By Example 5.1.6, it is also an 𝐿(𝑥)-formula for any
variable 𝑥, which we can write 𝐴(𝑥). Prove by induction on 𝐴 that for any term
𝑡, 𝐴(𝑡) is the very same formula as 𝐴.

[TODO. I actually skipped the analogous fact about terms in chapter 3, so I need
to go back and add it. You can take it for granted: if 𝑎 is an 𝐿-term, and thus
also an 𝐿(𝑥)-term 𝑎(𝑥), then 𝑎(𝑡) = 𝑎.]

5.2 Semantics

Consider the standard model of arithmetic ℕ. A truth about this structure is that
every number has a successor, and not every number is a successor. This is a truth
which we can formalize in the first-order language of arithmetic:
∀x ∃y (y = suc x) & ¬∀x ∃y (suc y = x)

(We haven’t officially introduced the existential quantifier ∃ yet, but we will very
soon.) What makes this sentence a good description of ℕ? And what makes this
other sentence a bad description of ℕ?
∀x ∀y ∃z (x + z = y)

This one says that for any numbers, there is a difference which added to the first
produces the second. This is a false claim about the natural numbers structure: for
example there is no natural number you can add to 3 to get 1. (Of course, there is
another sense in which any two numbers do have a difference, which is formalized
by this sentence:
∀x ∀y ∃z ((x + z = y) ∨ (y + z = x))

This is called the absolute difference between two numbers.)

Our goal in this section is to give a precise definition of “The first-order sentence
𝐴 is true in the structure 𝑆,” and then check that this definition works the way it
should.

Most of this definition is pretty straightforward, using recursion on formulas. For
example, one of our semantic rules will look like this:

For any 𝐿-formulas 𝐴 and 𝐵, 𝐴 & 𝐵 is true in 𝑆 iff 𝐴 and 𝐵 are both
true in 𝑆.

5.2. SEMANTICS 191

The trickiest bit is the step for quantifiers. Before we give an official definition, let’s
work through a concrete example. Sticking to the standard model of arithmetic,
consider this sentence:
∀x x ≤ x

What does it take for this sentence to be true? What it says is that everything in
the domain has a certain property—the property expressed by the formula of one
variable x ≤ x. Here is another way of saying this. Suppose we add the name x
to our language. Then whatever number x might stand for, the resulting sentence
x ≤ x would be true. So what our rule will say is that the 𝐿-sentence ∀𝑥 𝐴(𝑥) is
true in a structure 𝑆 iff, for every way of expanding 𝑆, by letting x stand for some
object in the domain of 𝑆, the resulting sentence 𝐴(𝑥) is true. Intuitively, ∀x x ≤ x
amounts to saying (in the context of the structure ℕ):

Let x be any number. Then x ≤ x.

Recall from Section 3.5 our definition of the expansion of a structure: 𝑆[𝑥 ↦ 𝑑]
is the 𝐿(𝑥)-structure you get by starting with an 𝐿-structure 𝑆, and letting the new
name 𝑥 stand for the object 𝑑 in the domain.

Here is how the step of our definition of truth for quantified formulas will go:

For any variable 𝑥 (not already in 𝐿), and any 𝐿(𝑥)-formula 𝐴(𝑥),
∀𝑥 𝐴(𝑥) is true in 𝑆 iff, for every object 𝑑 ∈ 𝐷𝑆 , 𝐴(𝑥) is true in
𝑆[𝑥 ↦ 𝑑].

For example, ∀x x ≤ x is true in ℕ iff, for every number 𝑛 ∈ ℕ, x ≤ x is true in
the expanded structure ℕ[x ↦ 𝑛] that lets x stand for 𝑛.

5.2.1 Definition
For a signature 𝐿, an 𝐿-structure 𝑆, and an 𝐿-formula 𝐴, we will recursively define
the relation 𝐴 is true in 𝑆 as follows.

1. For any 𝐿-terms 𝑎 and 𝑏:

𝑎 = 𝑏 is true in 𝑆 iff ⟦𝑎⟧𝑆 = ⟦𝑏⟧𝑆 .

2. For any one-place predicate 𝐹 and 𝐿-term 𝑎:

𝐹(𝑎) is true in 𝑆 iff ⟦𝑎⟧𝑆 ∈ 𝐹𝑆 , the extension of 𝐹 in 𝑆.

3. For any two-place predicate 𝑅 and 𝐿-terms 𝑎 and 𝑏:

𝑅(𝑎,𝑏) is true in 𝑆 iff the ordered pair (⟦𝑎⟧𝑆 , ⟦𝑏⟧𝑆) is in the
extension 𝑅𝑆 .

192 CHAPTER 5. TRUTH AND CONSEQUENCE

4. For any 𝐿-formula 𝐴:

¬𝐴 is true in 𝑆 iff 𝐴 is not true in 𝑆.

5. For any 𝐿-formulas 𝐴 and 𝐵:

𝐴 & 𝐵 is true in 𝑆 iff 𝐴 and 𝐵 are each true in 𝑆.

6. For any variable 𝑥 (not already in 𝐿) and any 𝐿(𝑥)-formula 𝐴(𝑥):

∀𝑥 𝐴(𝑥) is true in 𝑆 iff, for every object 𝑑 in the domain of 𝑆,
𝐴(𝑥) is true in the expanded structure 𝑆[𝑥 ↦ 𝑑].

Just like with the denotation of terms, we have a nice alternative way of talking
about truth in expanded structures that is usually a bit more intuitive.

5.2.2 Definition
Let 𝐿 be a signature and let 𝑆 be an 𝐿-structure. Let 𝐴(𝑥) be an 𝐿(𝑥)-formula,
and let 𝑑 be an object in 𝐷𝑆 . We say 𝐴(𝑥) is true of 𝑑 in 𝑆 iff 𝐴(𝑥) is true in
𝑆[𝑥 ↦ 𝑑]. Similarly, we say 𝐴(𝑥, 𝑦) is true of (𝑑1, 𝑑2) in 𝑆 iff 𝐴(𝑥, 𝑦) is true in
𝑆[𝑥 ↦ 𝑑1][𝑦 ↦ 𝑑2). And so on.

(This terminology requires that not just the variables 𝑥 and 𝑦, but also their intended
order is made clear in context.)

Another synonym for “𝐴(𝑥) is true of 𝑑” is “𝑑 satisfies A(x)”.

Using this lingo, we can restate the quantifier part of the definition of truth more
concisely:

∀𝑥 𝐴(𝑥) is true in 𝑆 iff 𝐴(𝑥) is true of each object in the domain of 𝑆.

Likewise, for formulas with extra variables we can say things like this:

∀𝑦 𝐴(𝑥, 𝑦) is true of 𝑑 in 𝑆 iff 𝐴(𝑥, 𝑦) is true of (𝑑, 𝑑′) for every object
𝑑′ in the domain of 𝑆.

We can also restate the other rules for the case of formulas containing a variable,
given an object 𝑑 in the domain of 𝑆:

𝑎(𝑥) = 𝑏(𝑥) is true of 𝑑 in 𝑆 iff ⟦𝑎(𝑥)⟧𝑆(𝑑) = ⟦𝑏(𝑥)⟧𝑆(𝑑).

𝐴(𝑥) & 𝐵(𝑥) is true of 𝑑 in 𝑆 iff 𝐴(𝑥) and 𝐵(𝑥) are each true of 𝑑 in
𝑆.

And similarly for all the other rules.

5.2. SEMANTICS 193

5.2.3 Example
Use the definition to show that ∀x ¬(suc x = 0) is true in the standard model of
arithmetic ℕ.

Proof
Let 𝑛 be any number. By the definition of the denotation function:

⟦suc 𝑥⟧ℕ(𝑛) = suc⟦𝑥⟧ℕ(𝑛) = suc 𝑛 ≠ 0 = ⟦0⟧ℕ(𝑛)

We already know that suc 𝑛 ≠ 0. (This is a statement about arithmetic, not a state-
ment about the semantics of any language.) So by the identity clause of Defini-
tion 5.2.1, this tells us that suc x = 0 is not true of 𝑛 in ℕ.

Thus, by the negation clause of Definition 5.2.1, ¬(suc x = 0) is true of 𝑛 in ℕ.

So we have shown:

For every number 𝑛 in the domain of ℕ, ¬(suc x = 0) is true of 𝑛 in
ℕ.

Thus, by the clause for quantifiers inDefinition 5.2.1, it follows that ∀x ¬(suc x = 0)
is true in ℕ. □

5.2.4 Exercise
Use Definition 5.2.1 to show, for each of the following sentences, whether it is
true or false in the standard string structure 𝕊.

(a) ∀x (x ⊕ "" = x)
(b) ∀x ∀y (x ⊕ y = y ⊕ x)

TODO. I'm sorry PHIL 450, I switched t and a
around here in what follows, compared to how it was done in
chapter 3. Later I'll go back and switch chapter 3 to match this.

In Exercise 3.5.10, we showed how two different notions of “plugging something
into” a term fit nicely together. Say you have a term 𝑎(𝑥), and another term 𝑡. If you
plug the term 𝑡 into 𝑎(𝑥), you get the term 𝑎(𝑡). This denotes some object, ⟦𝑎(𝑡)⟧𝑆 .
If you plug the thing that term 𝑡 stands for into the function that 𝑎(𝑥) stands for, this
will also give you some object, ⟦𝑎⟧𝑆⟦𝑡⟧𝑆 . The Substitution Lemma said that these
are both the same object:

⟦𝑎(𝑡)⟧𝑆 = ⟦𝑎⟧𝑆⟦𝑡⟧𝑆

Something similar to this also holds for formulas. We have the same two ways of
“plugging something into” a formula 𝐴(𝑥): substituting some term into a formula

194 CHAPTER 5. TRUTH AND CONSEQUENCE

to get 𝐴(𝑡), or evaluating whether 𝐴(𝑥) is true of a the object which is denoted by 𝑡.
Again, these two notions play well together.

5.2.5 Lemma (Substitution Lemma for Formulas)
Let 𝑆 be an 𝐿-structure, let 𝐴(𝑥) be an 𝐿(𝑥)-formula, and let 𝑡 be an 𝐿-term. Then
the 𝐿-formula 𝐴(𝑡) is true in 𝑆 iff 𝐴(𝑥) is true of ⟦𝑡⟧𝑆 in 𝑆.

Proof sketch
We can prove this by induction on the formula 𝐴(𝑥). Because there are six different
syntax rules for formulas, this inductive proof has six parts.

1. Identity. Let 𝑎(𝑥) and 𝑏(𝑥) be 𝐿(𝑥)-terms. The 𝐿-formula 𝑎(𝑡) = 𝑏(𝑡) is true
in 𝑆 iff

⟦𝑎(𝑡)⟧𝑆 = ⟦𝑏(𝑡)⟧𝑆

The Substitution Lemma (Exercise 3.5.10) tells us that the left side of this
is equal to ⟦𝑎(𝑥)⟧𝑆⟦𝑡⟧𝑆 , and the right side is equal to ⟦𝑏(𝑥)⟧𝑆⟦𝑡⟧𝑆 . So
𝑎(𝑡) = 𝑏(𝑡) is true in 𝑆 iff

⟦𝑎(𝑥)⟧𝑆⟦𝑡⟧𝑆 = ⟦𝑏(𝑥)⟧𝑆⟦𝑡⟧𝑆

This is precisely what it takes for 𝑎(𝑥) = 𝑏(𝑥) to be true of ⟦𝑡⟧𝑆 .

2. One-place predication. Exercise. Let 𝐹 be a one-place predicate and let 𝑎(𝑥)
be an 𝐿(𝑥)-term. Use Exercise 3.5.10 to show the following:

𝐹(𝑎(𝑥)) is true of ⟦𝑡⟧𝑆 in 𝑆 iff 𝐹(𝑎(𝑡)) is true in 𝑆.

3. Two-place predication. This goes basically the same way as step 2, so we’ll
skip it.

4. Negation. Exercise. (Compare the step for conjunction.)

5. Conjunction. Let 𝐴(𝑥) and 𝐵(𝑥) be 𝐿(𝑥)-formulas. Assume the following
two inductive hypotheses:

(a) 𝐴(𝑡) is true in 𝑆 iff 𝐴(𝑥) is true of ⟦𝑡⟧𝑆 in 𝑆.
(b) 𝐵(𝑡) is true in 𝑆 iff 𝐵(𝑥) is true of ⟦𝑡⟧𝑆 in 𝑆.

We now consider the conjunction

𝐴(𝑡) & 𝐵(𝑡)

This is true in 𝑆 iff 𝐴(𝑡) and 𝐵(𝑡) are both true in 𝑆. By (a), 𝐴(𝑡) is true iff
𝐴(𝑥) is true of ⟦𝑡⟧𝑆 . By (b), 𝐵(𝑡) is true iff 𝐵(𝑥) is true of ⟦𝑡⟧𝑆 . Furthermore,

𝐴(𝑥) & 𝐵(𝑥)

5.2. SEMANTICS 195

is true of ⟦𝑡⟧𝑆 iff both of those two parts hold.

6. Quantification. This is the trickiest part. This time, we’ll let 𝐴(𝑥, 𝑦) be an
𝐿(𝑥, 𝑦)-formula. For the inductive hypothesis, what we will suppose is that
for any 𝐿(𝑦)-structure 𝑆′,

𝐴(𝑡, 𝑦) is true in 𝑆′ iff 𝐴(𝑥, 𝑦) is true of ⟦𝑡⟧𝑆′ in 𝑆′.

Now, let 𝑆 be an 𝐿-structure. First, suppose that

∀𝑦 𝐴(𝑡, 𝑦) is true in 𝑆

We will show that ∀𝑦 𝐴(𝑥, 𝑦) is true of ⟦𝑡⟧𝑆 in 𝑆.

Let 𝑑 be any object in 𝐷𝑆 . By the definition of truth (Definition 5.2.1), 𝐴(𝑡, 𝑦)
is true of 𝑑 in 𝑆. In other words, 𝐴(𝑡, 𝑦) is true in the expanded structure
𝑆[𝑦 ↦ 𝑑]. Call this structure 𝑆′ for short. Then the inductive hypothesis
tells us that this implies that 𝐴(𝑥, 𝑦) is true of ⟦𝑡⟧𝑆′ in 𝑆′. Since 𝑡 is an 𝐿-
term and 𝑆′ is an expansion of 𝑆, Example 3.5.2 tells us that ⟦𝑡⟧𝑆′ = ⟦𝑡⟧𝑆 .
Call this object 𝑑′. Then to say that 𝐴(𝑥, 𝑦) is true of 𝑑′ in 𝑆′ means the
same thing as saying 𝐴(𝑥, 𝑦) is true in 𝑆[𝑥 ↦ 𝑑][𝑦 ↦ 𝑑′], which is the same
structure as 𝑆[𝑦 ↦ 𝑑′][𝑥 ↦ 𝑑]. Since this holds for arbitrary 𝑑 ∈ 𝐷𝑆 ,
Definition 5.2.1 tells us that ∀𝑦 𝐴(𝑡, 𝑦) is true in 𝑆[𝑦 ↦ 𝑑′]. In other words,

∀𝑦 𝐴(𝑥, 𝑦) is true of 𝑑′ in 𝑆

Since 𝑑′ = ⟦𝑡⟧𝑆 , this is what we wanted to show.

The other direction goes very similarly, and is left as an exercise. □

5.2.6 Exercise
Do the remaining parts of the proof of Lemma 5.2.5:

(a) One-place predicates
(b) Negation
(c) The other direction for quantifiers

5.2.7 Exercise
Suppose 𝑡 and 𝑡′ are 𝐿-terms, and 𝐴(𝑥) is an 𝐿(𝑥)-formula. Use Lemma 5.2.5
to show that, if 𝑡 and 𝑡′ denote the same object (in a structure 𝑆) then 𝐴(𝑡) and

196 CHAPTER 5. TRUTH AND CONSEQUENCE

𝐴(𝑡′) have the same truth-value (in 𝑆). In short:

If ⟦𝑡⟧𝑆 = ⟦𝑡′⟧𝑆 then 𝐴(𝑡) is true in 𝑆 iff 𝐴(𝑡′) is true in 𝑆

5.2.8 Exercise
By Example 3.5.2, any 𝐿-formula is also an 𝐿(𝑥)-formula. Let 𝐴 be an 𝐿-
formula, let 𝑆 be an 𝐿-structure, and let 𝑆[𝑥 ↦ 𝑑] be an expansion of 𝑆. Prove
that 𝐴 is true in 𝑆 iff 𝐴 is true in 𝑆[𝑥 ↦ 𝑑].

Notice that all of this works just fine if 𝐿 happens to include some extra variables
on the side. And we can apply the Substitution Lemma (Lemma 5.2.5) more than
once, to get things like this, for two terms 𝑡 and 𝑢:

𝐴(𝑡, 𝑢) is true in 𝑆 iff 𝐴(𝑥, 𝑦) is true of (⟦𝑡⟧𝑆 , ⟦𝑢⟧𝑆) in 𝑆.

So far we’ve just been working with our “primitive” logical symbols: ∀, ¬, &, and
=. These are the only logical symbols in our official first-order language. But this
isn’t a serious limitation. For example, consider “or”: say we want to formalize the
claim x = 0 or x = 1. We can unpack this statement in terms of “and” and “not”:
¬(¬(x = 0) & ¬(x = 1))

This has exactly the same truth conditions as the “or” statement: the only way it
can be false is if both x = 0 and x = 1 are false. But in practice, we don’t want
to write out this complicated expression every time we want an “or” statement. So
we’ll just introduce a handy shorthand: we’ll write 𝐴 ∨ 𝐵 as an abbreviation for
the official formula ¬(¬𝐴 & ¬𝐵). This means that when we write down certain
strings, we’re really officially talking about the string you get by unpacking all of
the abbreviations. But we’ve already been allowing ourselves a bit of this kind
of laziness—for example, by leaving off parentheses, or using “infix” notation for
operators and relation symbols.

We can use similar tricks for other logical connectives.

5.2.9 Definition
For any formulas 𝐴 and 𝐵, terms 𝑎 and 𝑏, and variable 𝑥:

(a) The material conditional 𝐴 → 𝐵 abbreviates the formula ¬(𝐴 & ¬𝐵).

(b) The biconditional 𝐴 ↔ 𝐵 abbreviates the formula (𝐴 → 𝐵) & (𝐵 → 𝐴)).

(c) The disjunction 𝐴 ∨ 𝐵 abbreviates the formula ¬𝐴 → 𝐵.

(d) The standard truth ⊤ is the formula ∀x (x = x).

5.2. SEMANTICS 197

(e) The standard falsehood ⊥ is the formula ¬⊤.

(f) The existential generalization ∃𝑥 𝐴 abbreviates the formula ¬∀𝑥 ¬𝐴.

(g) The unique existential ∃!𝑥 𝐴(𝑥) abbreviates the formula

∃𝑦 ∀𝑥 (𝑥 = 𝑦 ↔ 𝐴(𝑥))

(where 𝑦 is a distinct variable from 𝑥).

(h) 𝑎 ≠ 𝑏 abbreviates the formula ¬𝑎 = 𝑏.

5.2.10 Example
Let 𝐿 be any signature (left implicit), let 𝑆 be any structure.

(a) For any formulas 𝐴 and 𝐵, the formula 𝐴 → 𝐵 is true in 𝑆 iff either 𝐴 is false
in 𝑆, or 𝐵 is true in 𝑆.

(b) For any formula of one variable 𝐴(𝑥), the formula ∃𝑥 𝐴(𝑥) is true in 𝑆 iff
there is some 𝑑 in the domain of 𝑆 such that 𝐴(𝑥) is true of 𝑑.

Proof of (a)
Let 𝐴 and 𝐵 be formulas. By Definition 5.2.9, 𝐴 → 𝐵 abbreviates the formula

¬(𝐴 & ¬𝐵)

Using the definition of truth (Definition 5.2.1),

¬(𝐴 & ¬𝐵) is true in 𝑆
iff 𝐴 & ¬𝐵 is not true in 𝑆
iff 𝐴 and ¬𝐵 are not both true in 𝑆
iff either 𝐴 is false in 𝑆 or 𝐵 is true in 𝑆 □

Proof of (b)
By Definition 5.2.9, ∃𝑥 𝐴(𝑥) abbreviates

¬∀𝑥 ¬𝐴(𝑥)

Using Definition 5.2.1 again,

¬∀𝑥 ¬𝐴(𝑥) is true in 𝑆
iff ∀𝑥 ¬𝐴(𝑥) is not true in 𝑆

198 CHAPTER 5. TRUTH AND CONSEQUENCE

This holds iff it is not the case that for every 𝑑 ∈ 𝐷, ¬𝐴(𝑥) is true of 𝑑 in 𝑆.
That is, this holds iff there is some 𝑑 ∈ 𝐷 such that ¬𝐴(𝑥) is not true of 𝑑 in 𝑆.
Furthermore ¬𝐴(𝑥) is not true of 𝑑 (in 𝑆) iff 𝐴(𝑥) is true of 𝑑 (in 𝑆). Putting this
together, ¬∀𝑥 ¬𝐴(𝑥) is true in 𝑆 iff there is some 𝑑 ∈ 𝐷 such that 𝐴(𝑥) is true of 𝑑
in 𝑆, which is what we wanted to show. □

5.2.11 Exercise
Prove the following, using Definition 5.2.9 and Definition 5.2.1. Let 𝐿 be any
signature, let 𝑆 be any 𝐿-structure, and let 𝐴 and 𝐵 be 𝐿-formulas.

(a) 𝐴 ↔ 𝐵 is true in 𝑆 iff 𝐴 and 𝐵 have the same truth-value in 𝑆.

(b) 𝐴 ∨ 𝐵 is true in 𝑆 iff at least one of 𝐴 and 𝐵 is true in 𝑆.

(c) ⊤ is true in every structure.

(d) ⊥ is false in every structure.

(e) For any 𝐿(𝑥)-formula 𝐴(𝑥), ∃!𝑥 𝐴(𝑥) is true in 𝑆 iff there is exactly one
𝑑 in the domain of 𝑆 such that 𝐴(𝑥) is true of 𝑑.

5.3 Metalogic

A sentence can be true or false in a structure. One reason we care about this is
because we care about the truth. If we are using a certain language to talk about
a certain structure 𝑆, then we can find out what is true by investigating which sen-
tences are true in 𝑆. But there is also another important reason we care about truth-
in-a-structure: we also care about what follows from what. Which arguments are
logically valid? Which theories are logically consistent? One of the neat insights
of modern logic (originally from Tarski [1936] 2002) is that that we can understand
logical consequence and logical consistency by looking at what is true in different
structures. (This isn’t the only way to do it. In Chapter 8 we’ll consider an alterna-
tive, older approach to logical consequence and logical consistency, using proofs
instead of structures.)

Here’s the basic idea. The sentence
Snow is white

is true. But the sentence

5.3. METALOGIC 199

If snow is white, snow is white

is not only true, but logically true. We can tell that it is true without knowing
anything about the color of snow, and indeed without even knowing what the word
“snow”means. This is because, nomatterwhat “snow” and “white” happen tomean,
the sentence will still be true. Typically, whether a sentence is true depends on its
actual “intended” interpretation. But if a sentence is logically true, then it is true
on every possible reinterpretation—including alternative “unintended” interpreta-
tions. Even if we perversely interpret snow to mean “water” and white to mean
“impenetrable”, we would still understand If snow is white, snow is white
to express something true (namely, that if water is impenetrable, water is impene-
trable). The basic idea is that a sentence is logically true if it is true according to
every interpretation. Since a structure (for a signature 𝐿) provides us with a way
of interpreting a sentence (in the language with signature 𝐿), this means that if an
𝐿-sentence is logically true, it should be true in every 𝐿-structure.

(But what if we also perversely interpret the word if to mean “unless”? Then
we could end up understanding the sentence as saying something false. The more
precise idea is that a logical truth is true according to every reinterpretation of its
non-logical expressions. But this raises the difficult question of what is supposed
to count as a logical expression. What do we hold fixed, and what do we allow
to vary? It’s not clear how to answer this question in general. But for our present
purposes, we do have a precise answer. We are talking specifically about first-order
sentences, and instead of “interpretations” in general we are talking specifically
about structures. That means we are only looking at reinterpretations of the basic
symbols in the signature of our language: the basic names, function symbols, and
relation symbols. These are the only bits of the language whose extensions are
allowed to vary from structure to structure. You could explore how things go with
other choices of what to reinterpret. For example, maybe you don’t like fixing the
same interpretation of identity in every structure, or maybe you think we should
also fix the interpretation of some extra things, such as a predicate Set. You can
do that, and if you do, you will end up with different logical systems with different
things counting as “logical truths.” But for now we are just studying one particular
logical system: first-order logic with identity.)

Our definitions of logical consistency and logical consequence are based on the
same idea as this definition for logical truth. Logical consistency means being
true according to at least one interpretation. Logical consequence means having
no counterexamples, where a counterexample to an argument is an interpretation
according to which every premise is true, but the conclusion is false.

200 CHAPTER 5. TRUTH AND CONSEQUENCE

Now let’s do this officially.

5.3.1 Definition
Let 𝐿 be a signature, and let 𝐴 be an 𝐿-formula.

(a) 𝐴 is a logical truth (or valid) iff 𝐴 is true in every 𝐿-structure.

(b) 𝐴 is logically consistent iff 𝐴 is true in some 𝐿-structure.

We can also extend these notions to sets of sentences, in a natural way.

5.3.2 Definition
Let 𝐿 be a signature. Let 𝑋 be a set of 𝐿-formulas, and let 𝐴 be an 𝐿-formula.
We’ll leave the 𝐿’s implicit.

(a) A structure 𝑆 is a model of 𝑋 iff every formula in 𝑋 is true in 𝑆.

(b) 𝑋 is (semantically) consistent iff 𝑋 has a model. (That is, some structure is
a model of 𝑋.) Otherwise 𝑋 is (semantically) inconsistent.

(c) 𝐴 is a logical consequence of 𝑋 (for short, 𝑋 ⊨ 𝐴) iff 𝐴 is true in every
model of 𝑋.

5.3.3 Example
Consider a signature with one name c, and one one-place function symbol f. This
set of sentences is consistent:

{ ∀x ¬(f(x) = x), f(f(c)) = c }

Proof
We can show this by explicitly providing a model, like the one in (Fig. 5.1).

c

f

f

Figure 5.1: An example model.

The domain of this structure 𝑆 has two elements—for concreteness, say the domain
is {0, 1}. Let c𝑆 (the extension of the name c) be 0, and let f𝑆 be the function that
takes 0 to 1 and 1 to 0.

5.3. METALOGIC 201

There are, of course, many other models for this set of sentences. But to prove they
are consistent, we just have to provide one. □

5.3.4 Example
This set of sentences is inconsistent:

{ ∀x ¬f(x) = x, f(f(f(c))) = c }

Proof
We can’t prove this just by providing examples of structures which are not models:
rather, we have to give a general argument that there is no structure where both of
these sentences are true. Here’s one way of arguing for this.

Suppose (for reductio) that 𝑆 is a model of these sentences. Then in particular,
∀x ¬(f(x) = x) is true in 𝑆. This means that for each 𝑑 in the domain of 𝑆,
¬(f(x) = x) is true of 𝑑 in 𝑆. In particular, let 𝑑 be the element that is denoted by
f c in 𝑆. Since ¬(f(x) = x) is true of 𝑑 in 𝑆, and f(c) denotes 𝑑, it follows (from
the Substitution Lemma, Lemma 5.2.5) that ¬(f(f(c)) = f(c)) is true in 𝑆. Thus
f(f(c)) = f(c) is false in 𝑆. Since 𝑆 was an arbitrary structure, we have shown
that no structure is a model of both ∀x ¬(f(x) = x) and f(f(c)) = f(c). □

5.3.5 Exercise
Let c be a name and let f be a one-place function symbol. Show whether each
of the following sets of sentences is consistent or inconsistent.

(a) { ∃x (f(x) = c), ∃x ¬(f(x) = c) }
(b) { f(c) = c, ∀x ¬(f(x) = c) }
(c) { ∀x ¬(f(c) = x) }
(d) { ∀x ¬(f(x) = c), ∀x ∀y (f(x) = f(y) → x = y) }

5.3.6 Notation
When we use the “turnstile” notation 𝑋 ⊨ 𝐴 for logical consequence, it’s common
to take a few notational shortcuts. In this context, we usually leave out set brackets,
and we use commas instead of union signs. If 𝑋 and 𝑌 are sets of sentences, and
𝐴, 𝐵, and 𝐶 are sentences, then instead of these—

{𝐴, 𝐵} ⊨ 𝐶 𝑋 ∪ {𝐴} ⊨ 𝐵 𝑋 ∪ 𝑌 ∪ {𝐴, 𝐵} ⊨ 𝐶 ∅ ⊨ 𝐴
—we’ll usually write these simplified versions:

𝐴, 𝐵 ⊨ 𝐶 𝑋, 𝐴 ⊨ 𝐵 𝑋, 𝑌 , 𝐴, 𝐵 ⊨ 𝐶 ⊨ 𝐴

202 CHAPTER 5. TRUTH AND CONSEQUENCE

(For these shortcuts to make sense, we have to make it clear in context which letters
stand for sentences and which letters stand for sets of sentences.)

5.3.7 Example
Let 𝑋 be a set of sentences and let 𝐴 be a sentence. Show that 𝑋 ⊨ 𝐴 iff 𝑋 ∪ {¬𝐴}
is inconsistent.

Proof
𝑋 ∪ {¬𝐴} is consistent iff some structure 𝑆 is a model of 𝑋 ∪ {¬𝐴}. This means
that every sentence in 𝑋 is true in 𝑆 and ¬𝐴 is true in 𝑆, which means that 𝑆 is a
model of 𝑋 in which ¬𝐴 is true, or equivalently, 𝑆 is a model of 𝑋 in which 𝐴 is
not true. So 𝑋 ∪ {¬𝐴} is inconsistent iff there is no such 𝑆: that is, 𝐴 is true in
every model of 𝑋. That’s just what 𝑋 ⊨ 𝐴 means. □

5.3.8 Exercise
(a) 𝑋 is inconsistent iff 𝑋 ⊨ ⊥.

(b) 𝐴 is a logical truth iff ⊨ 𝐴 (that is, 𝐴 is a logical consequence of the empty
set of premises).

5.3.9 Example
Let 𝐿 be any signature. Let 𝐴 and 𝐵 be any 𝐿-formulas, and let 𝑋 and 𝑌 are any
sets of 𝐿-formulas. Prove the following facts about logical consequence.

(a) Assumption
𝑋, 𝐴 ⊨ 𝐴

(b) Weakening
If 𝑋 ⊨ 𝐴 then 𝑋, 𝑌 ⊨ 𝐴

(c) Conjunction Introduction

If 𝑋 ⊨ 𝐴 and 𝑋 ⊨ 𝐵 then 𝑋 ⊨ 𝐴 & 𝐵

(d) Modus Ponens
𝐴, 𝐴 → 𝐵 ⊨ 𝐵

Proof of (a)
We want to show that 𝐴 is true in every model of 𝑋 ∪ {𝐴}. This is obvious: if 𝑆 is
a model of 𝑋 ∪ {𝐴}, that means that every element of 𝑋 ∪ {𝐴} is true in 𝑆, so in
particular 𝐴 is true in 𝑆. So we’re done. □

5.3. METALOGIC 203

Proof of (b)
Suppose that 𝑋 ⊨ 𝐴: that is, 𝐴 is true in every model of 𝑋. We want to show that
𝑋, 𝑌 ⊨ 𝐴: that is, that 𝐴 is true in every model of 𝑋 ∪ 𝑌 . So suppose that 𝑆 is a
model of 𝑋 ∪ 𝑌 . That means that every formula in 𝑋 ∪ 𝑌 is true in 𝑆. But every
formula in 𝑋 is a formula in 𝑋 ∪ 𝑌 , so 𝑆 is also a model of 𝑋. So 𝐴 is true in 𝑆.
This is what we wanted to show. □

Proof of (c)
Suppose that 𝑋 ⊨ 𝐴 and 𝑋 ⊨ 𝐵, and suppose that 𝑆 is a model of 𝑋. Then since
𝑋 ⊨ 𝐴, it follows that 𝐴 is true in 𝑆, and since 𝑋 ⊨ 𝐵, it follows that 𝐵 is true in
𝑆. By Definition 5.2.1, this means that 𝐴 & 𝐵 is true in 𝑆. So 𝐴 & 𝐵 is true in
every model of 𝑋, which is what we wanted to show. □

Proof of (d)
Suppose that 𝑆 is a model of {𝐴, 𝐴 → 𝐵}: that is, 𝐴 is true in 𝑆, and 𝐴 → 𝐵 is
true in 𝑆. By Exercise 5.2.11, the truth of the conditional tells us that either 𝐴 is
false in 𝑆, or 𝐵 is true in 𝑆. But 𝐴 is not false in 𝑆, so 𝐵 must be true in 𝑆. This
shows that 𝐵 is true in every model of {𝐴, 𝐴 → 𝐵}. □

5.3.10 Exercise
Prove the following facts about logical consequence, where 𝐴, 𝐵, and 𝐶 are any
𝐿-formulas, and 𝑋 and 𝑌 are any sets of 𝐿-formulas (for an arbitrary signature
𝐿).

(a) Cut
If 𝑋 ⊨ 𝐴 and 𝑌 , 𝐴 ⊨ 𝐵 then 𝑋, 𝑌 ⊨ 𝐵

(b) Conjunction Elimination

If 𝑋 ⊨ 𝐴 & 𝐵 then 𝑋 ⊨ 𝐴 and 𝑋 ⊨ 𝐵

(c) Double Negation Elimination

If 𝑋 ⊨ ¬¬𝐴 then 𝑋 ⊨ 𝐴

(d) Proof by Contradiction (Reductio)

If 𝑋, 𝐴 ⊨ 𝐵 and 𝑋, 𝐴 ⊨ ¬𝐵 then 𝑋 ⊨ ¬𝐴

204 CHAPTER 5. TRUTH AND CONSEQUENCE

(e) Conditional Proof

If 𝑋, 𝐴 ⊨ 𝐵 then 𝑋 ⊨ 𝐴 → 𝐵

5.3.11 Example (Leibniz’s Law)
Let 𝑎 and 𝑏 be 𝐿-terms, and let 𝐴(𝑥) be an 𝐿(𝑥)-formula.

If 𝑋 ⊨ 𝑎 = 𝑏 and 𝑋 ⊨ 𝐴(𝑎) then 𝑋 ⊨ 𝐴(𝑏)

Proof
Let 𝑆 be any model of 𝑋. Given that 𝑋 ⊨ 𝑎 = 𝑏, we know 𝑎 = 𝑏 is true in 𝑆. This
implies tells us that ⟦𝑎⟧𝑆 = ⟦𝑏⟧𝑆 . Given that 𝑋 ⊨ 𝐴(𝑎), we know that 𝐴(𝑎) is true
in 𝑆. By the Substitution Lemma (Lemma 5.2.5) this implies that ⟦𝑎⟧𝑆 satisfies
𝐴(𝑥) in 𝑆. Thus ⟦𝑏⟧𝑆 satisfies 𝐴(𝑥) in 𝑆, and so (using the Substitution Lemma a
second time) 𝐴(𝑏) is true in 𝑆. □

5.3.12 Exercise
Let 𝑋 be a set of 𝐿-formulas, let 𝑎 be an 𝐿-term, and let 𝐴(𝑥) be an 𝐿(𝑥)-formula.

(a) Reflexivity.
𝑋 ⊨ 𝑎 = 𝑎

(b) Universal Instantiation.

If 𝑋 ⊨ ∀𝑥 𝐴(𝑥) then 𝑋 ⊨ 𝐴(𝑎)

(c) Universal Generalization. ByExample 5.1.6, we know that each formula
in 𝑋 is also an 𝐿(𝑥)-formula. Prove:

If 𝑋 ⊨ 𝐴(𝑥) then 𝑋 ⊨ ∀𝑥 𝐴(𝑥)

Hint. Use Exercise 5.2.8.

Notice that all of the definitions and facts we’ve proved in this section work even for
signatures that happen to include extra variables (besides the ones we’ve explicitly
mentioned). So, for example, it makes sense to say that x = x is a logical truth,
since it is true in every 𝐿(x)-structure.

5.4. THEORIES AND AXIOMS 205

5.4 Theories and Axioms

The ancient Greeks knew a lot about geometry. Around 300 BCE, the Greco-
Egyptian mathematician Euclid systematized this knowledge by showing how a
huge variety of different facts about figures in space could be derived from a very
small collection of basic principles—or axioms—about points, lines, and circles. It
was a beautiful accomplishment, and since then Euclid’s “axiomatic method” has
been deeply influential. It’s a wonderful thing when we can find a simple set of ba-
sic principles with far-reaching implications—and this kind of thing has been done
over and over again with remarkable success in mathematics, in empirical science,
and in philosophy. Consider just a few examples from the history of philosophy. In
the 18th century Isaac Newton (among others) gave elegant principles describing
space, time, and the motion of material objects. In the 19th century John Stuart
Mill (among others) gave elegant principles describing which actions are best. In
the 20th century, Ruth Barcan Marcus (among others) gave elegant principles de-
scribing essence and contingency—about what particular objects could have been
like.

(Of course in each case, there are important questions about whether the principles
these philosophers gave are true. Lots of false statements are “axioms” in some the-
ory or other. Calling certain statements “axioms” and their consequences a “theory”
isn’t taking any stand on whether they are true or false.)

We now have some tools to help us understand how this works. Later on we will
also encounter some striking ways that it doesn’t work (especially in Section 7.7
and Section 8.5).

There are two parts to this deep idea: “a simple set of basic principles,” and
“far-reaching implications”. In the previous section we worked out an account of
implications—that is, an account of first-order logical consequence. The set of
everything that logically follows from certain principles is called a theory.

5.4.1 Definition
Let 𝑇 be a set of 𝐿-sentences.

(a) Let 𝑋 be a set of sentences. We say 𝑋 axiomatizes 𝑇 iff 𝑇 includes all and
only the logical consequences of 𝑋. That is,

𝑇 = {𝐴 ∈ 𝔽𝐿 ∣ 𝑋 ⊨ 𝐴}

We call the elements of 𝑋 axioms for 𝑇 , and we call the elements of 𝑇 the-
orems of 𝑇 .

206 CHAPTER 5. TRUTH AND CONSEQUENCE

(b) 𝑇 is a theory iff there is some set of sentences 𝑋 that axiomatizes 𝑇 .

Here are some examples.

5.4.2 Definition
The minimal theory of arithmetic, called 𝖰 for short, is axiomatized by the fol-
lowing sentences. (Here and throughout, whenever we present an axiom with free
variables, we should understand this as implicitly adding universal quantifiers to
the front as needed to turn the open formula into a sentence.)

0 ≠ suc x
suc x = suc y → x = y

x + 0 = x
x + suc y = suc (x + y)

x · 0 = 0
x · suc y = (x · y) + x

¬(x < 0)
x < suc y ↔ (x < y ∨ x = y)

x < y ∨ x = y ∨ y < x
x = 0 ∨ ∃y (x = suc y)

(See CITE BBJ 16.2.) The first two axioms capture the Injective Property of Num-
bers. The next three pairs capture the recursive definitions of addition, multiplica-
tion, and less-then, respectively. The last two axioms give us a kind of exhaustive-
ness conditions. (But they are not nearly as powerful as our full-fledged exhaustive-
ness condition, the Inductive Property of Numbers.)

5.4.3 Definition
The minimal theory of strings, or 𝖲 for short, has the following axioms.

Remember that the language of strings includes a name for each one-symbol string.
We start off with a long list of axioms of the form

𝑐𝑎 ≠ 𝑐_𝑏

for each pair of names for distinct symbols 𝑎 and 𝑏 in the alphabet 𝔸. (For example,
this includes the axioms "A" ≠ "B", "A" ≠ "C", "B" ≠ "C", and so on.)

5.4. THEORIES AND AXIOMS 207

We will use Sym(x) as an abbreviation for the long formula

x = "A" ∨ x = "B" ∨ ⋯ ∨ x = 𝑐𝑎 ∨ ⋯

which lists out all of the names 𝑐𝑎 that stand for a single symbol 𝑎 ∈ 𝔸. Next we
have two axioms corresponding to the Injective Property of strings.
Sym(x) → x ⊕ y ≠ ""
Sym(x₁) → Sym(x₂) → x₁ ⊕ y₁ = x₂ ⊕ y₂ → (x₁ = x₂ & y₁ = y₂)

We then state some basic properties of joining together strings.
"" ⊕ x = x
x ⊕ "" = x
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

Next, we have some axioms for the “no-longer-than” relation ≲.
"" ≲ x
x ≲ "" ↔ x = ""
Sym(x₁) → Sym(x₂) → x₁ ⊕ y₁ ≲ x₂ ⊕ y₂ ↔ y₁ ≲ y₂
x ≲ y ∨ y ≲ x

Finally, we have an axiom that says every string is either empty, or else the result
of adding some symbol to the beginning of another string.
x = "" ∨ ∃y ∃z (Sym(y) & x = y ⊕ z)

The theory 𝖰 does not include all of the truths of arithmetic—just some of them.
Likewise, the theory 𝖲 just includes a small fragment of the first-order truths in
the standard string structure 𝕊. These theories are important because, while they
are both pretty simple,1 at the same time they also turn out to be strong enough to
represent lots of interesting structure. They will be important players in Chapter 6
and Chapter 7.

1The list of axioms for 𝖲 is not short: because we are using such an extravagantly large alphabet
with over 100,000 basic symbols, the full list of axioms would take more than 10 billion symbols to
write out explicitly! Of course, if we cared about doing things more efficiently we could really do
everything important with a much, much smaller alphabet. If we decided to be super-efficient and
write everything using a two-symbol alphabet (“binary code”), then the fully-written out sentence
that axiomatizes the theory analogous to 𝖲 would comfortably fit on a single page.

208 CHAPTER 5. TRUTH AND CONSEQUENCE

5.4.4 Exercise
Let 𝑇 be a set of 𝐿-sentences. 𝑇 is a theory iff, for every 𝐿-sentence 𝐴, if 𝑇 ⊨ 𝐴
then 𝐴 ∈ 𝑇 .

Notice that it isn’t built into the definition of a theory that its axioms have to be
simple. For example, we could count every single truth of arithmetic as an “axiom”,
as far as the definition goes. But theories with simple axioms are especially nice.
These two examples of theories do have simple axioms: in particular, we can give
all of the axioms in a short list.

5.4.5 Definition
A theory 𝑇 is finitely axiomatizable iff there is some finite set of sentences 𝑋 that
axiomatizes 𝑇 .

5.4.6 Example
The minimal theory of arithmetic 𝖰 and the minimal theory of strings 𝖲 are each
finitely axiomatizable.

5.4.7 Exercise
Suppose that 𝑇 is a finitely axiomatizable theory with axioms 𝐴1, …, 𝐴𝑛. Then
for any sentence 𝐵, 𝐵 is a theorem of 𝑇 iff

(𝐴1 & ⋯ & 𝐴𝑛) → 𝐵

is a logical truth.

You might think that only finitely axiomatizable theories are simple enough to be
useful for humans. But that isn’t true: some infinite sets of axioms are also practi-
cally useful. Here is an important example:

5.4.8 Definition
First-order Peano arithmetic PA is the theory with the following axioms. There
are two parts. The first part is the same as in minimal arithmetic 𝖰 (leaving off just
the last two axioms, which will no longer be needed):

suc x ≠ 0
suc x = suc y → x = y

x + 0 = x
x + suc y = suc (x + y)

5.4. THEORIES AND AXIOMS 209

x ⋅ 0 = 0
x ⋅ suc y = (x ⋅ y) + x

¬(x < 0)
x < suc y ↔ (x < y ∨ x = y)

For the second part, we have some axioms that are intended to capture the Inductive
Property of Numbers. For any formula 𝐴(x), we have an axiom of this form:

(𝐴(0) & ∀x (𝐴(x) → 𝐴(suc x))) → ∀x 𝐴(x)

Axioms of this form are called instances of the induction schema.

(To be more precise, the formula 𝐴(x) in the induction schema is allowed to have
extra variables on the side besides just x. For example, here is an instance of the
induction schema:
(y ≤ 0 & ∀x (y ≤ x → y ≤ suc x)) → ∀x y ≤ x

Remember that thismeans in the fully spelled out axiomwe put universal quantifiers
out front to bind all the extra variables—in this example, that means putting ∀y at
the beginning of the sentence.)

First-order Peano arithmetic has infinitely many axioms. So we can’t simply list all
of them. But we can still describe all of the axioms using a simple rule. It is easy
to tell whether a sentence is an instance of the induction schema just by looking at
its syntactic structure. There have been many foundational debates about whether
some principle should or should not be taken for granted in mathematical reasoning
(let alone philosophical reasoning!) and many of these debates are very difficult to
resolve. But there shouldn’t be any dispute over whether a certain formula is an
axiom of Peano arithmetic, as we have officially defined it. If any dispute like this
comes up, we have clear rules that we can use to settle it.

A theory like this is called effectively axiomatizable: what counts as an axiom can
be checked using some straightforward procedure. But we won’t give an official
definition of this notion until after we have said more about the idea of a “straight-
forward procedure” in Chapter 7.

We can do something similar with the theory of strings. We can also do proof by
induction on strings, and this fact was officially captured by the Inductive Property
of Strings. This says, intuitively, that if the empty string has a property, and adding
a single symbol always takes you from a string with the property to another string

210 CHAPTER 5. TRUTH AND CONSEQUENCE

with that property, then every string has the property. Again, we can try to capture
this kind of reasoning using an axiom schema. For any formula 𝐴(x), this will give
us an axiom of this form:

𝐴("") & ∀y ∀x (Sym(y) & 𝐴(x) → 𝐴(y ⊕ x)) → ∀x 𝐴(x)

(The same point about allowing formulas with extra side variables applies here,
too.) If we add these axioms to the minimal theory of strings, we get a theory
which is effectively axiomatizable (even though it isn’t finitely axiomatized). We’ll
call this theory the first-order inductive theory of strings, or 𝖲𝖨 when we want
an abbreviation. (As it happens, this axiomatization is a little redundant, since two
of the original axioms from the minimal theory of strings can be proved using the
induction axiom schema, but we won’t worry about this detail. Exercise: which
two?)

There is one more important example of a theory which is effectively axiomatizable,
but not finitely axiomatizable. In principle, we could formalize all the reasoning we
have been doing throughout this textbook. We have set out some axioms—some ba-
sic principles about sets, functions, numbers, sequences, and so on. We could for-
malize all of these principles in a first-order language in a signature with predicates
like Set, Element, Number, and so on. And then we could show that the various ex-
ercises and lemmas and theorems we have proved are logical consequences of these
axioms. But we couldn’t do this with just a finite set of axioms. You may remem-
ber from way back in Chapter 1 that we had a couple of axioms that talked about
properties—namely, Separation and Choice. Here’s how we stated the Axiom of
Separation:

Let 𝐹 be any property. For any set 𝐴, there is a set 𝐵 such that, for
any thing 𝑎: 𝑎 is an element of 𝐵 iff 𝑎 is an element of 𝐴 that has the
property 𝐹 .

This looks like a “second-order” axiom, about arbitrary properties. If we are going
to formalize this axiom in a first-order language, we can use the same trick as in first-
order Peano arithmetic. We can replace this single axiom with an axiom schema.
We could formalize it like this: for any formula 𝐹 (𝑥) in the first-order language we
use to formalize our reasoning, we have an axiom of this form:

∀x (Set(x) → ∃y (Set(y) & ∀a (a ∈ y ↔ 𝐹 (a))))

There are infinitely many different axioms of this form, but they are all described
by the same simple rule.

The system of axioms we have used in this book is a lot more complicated than what

5.4. THEORIES AND AXIOMS 211

people usually use to formalize mathematical reasoning. In general, there is a trade-
off between how simple an axiomatization is and how straightforward it is to use to
prove things—and we have gone with usability over simplicity. The axiom system
people standardly use is muchmore austere. It is a pure set theory: according to this
theory, everything is a set. Functions, numbers, sequences, and so on, are all defined
to be certain special kinds of sets. Instead of using many different predicates, like
Set, Function, and Number, it uses just one basic predicate: ∈, for being an element
of a set. And instead of many different axioms spelling out the important properties
of sets, functions, numbers, sequences, and so on, all separately, it has just eight
axioms.

This very austere formal system is called ZFC. It is described informally in “starred”
Section 1.6, and we present a more official version in Chapter 10. But the details
are really not important for our purposes. What is important is that, in principle,
you can formalize all of the reasoning we have been doing in this textbook in a
first-order theory. And even though this theory is not finitely axiomatizable, it is
still reasonably simple, in the sense of being effectively axiomatizable. (Again, we
will explain this concept more precisely in Section 7.7.)

But not all theories are simple. One way of describing a theory is “bottom-up”,
by starting with some nice set of axioms that generates the whole theory. But we
can also describe a theory “top-down”, by starting with a structure (or a set of
structures). For example, the set of all truths of arithmetic is a theory, since anything
that follows from the truths of arithmetic is another truth of arithmetic.

5.4.9 Definition
Let 𝑆 be a structure. The first-order theory of 𝑆 is the set of all sentences which
are true in 𝑆. We call this Th𝑆 for short.

5.4.10 Example
(a) The first-order theory of arithmetic is Thℕ, the set of all sentences that are

true in the standard model of arithmetic.

(b) The first-order theory of strings is Th𝕊, the set of all sentences that are true
in the standard string structure.

Notice that we’ve used the word “theory” in this definition, but we haven’t really
justified using this word yet. Is the theory of a structure really a theory in the sense
of Definition 5.4.1—a set of sentences that are the consequences of some axioms
(perhaps infinitely many)? Yes: the first-order theory of any structure is a theory.
But not every theory is the theory of some structure. The following exercises show

212 CHAPTER 5. TRUTH AND CONSEQUENCE

these facts.

5.4.11 Definition
A set of 𝐿-sentences 𝑋 is negation-complete iff for every 𝐿-sentence 𝐴, either
𝐴 ∈ 𝑋 or ¬𝐴 ∈ 𝑋 (or both).

5.4.12 Exercise
Suppose 𝑋 is a set of sentences.

(a) Suppose 𝑋 is the first-order theory of some structure 𝑆.

(i) 𝑋 is consistent,
(ii) 𝑋 is negation-complete, and
(iii) 𝑋 is a theory.

(b) If 𝑋 is consistent and negation-complete, then 𝑋 is the theory of some
structure: that is, there is some structure 𝑆 such that 𝑋 = Th𝑆.

5.4.13 Exercise
For each of the following, either give an example or explain why there is no
example.

(a) A theory which is not negation-complete.

(b) A theory which is not consistent.

(c) A consistent and negation-complete set of sentences which is not a theory.

Here’s an important question: when can a structure be completely described using
simple axioms? Can we come up with a simple system of axioms from which we
can derive all of the truths? For example, First-Order Peano Arithmetic looks like
a reasonable candidate for a set of axioms that might capture all of the truths of
arithmetic. (In that case, First-Order Peano Arithmetic would be the very same the-
ory as the complete first-order theory of arithmetic Thℕ.) Likewise, the first-order
inductive theory of strings looks like a reasonable candidate for an axiomatization
of the complete theory of strings, and ZFC looks like a reasonable candidate for a
set of axioms that captures all of the truths of pure set theory. But do they really?
We will answer this question in Section 8.5. But here’s a preliminary result.

5.4.14 Exercise
If 𝑆 is a finite structure, then Th𝑆 is finitely axiomatizable.

5.5. REVIEW 213

Note. This exercise is harder than most.

5.5 Review

Key Techniques

• Syntax. Formulas in a first-order language make up another inductive struc-
ture.

– We can prove things about all formulas by induction.
– We can define functions on all formulas by recursion.

• Semantics. First-order formulas can be true or false in a structure, or true or
false of certain objects. Truth has a recursive definition. We can use this to
prove things about the truth conditions of different sentences.

• Metalogic. We can prove things about validity, logical consequence, and
consistency, using the idea of truth in a structure and a model of a set of
sentences.

Key Concepts and Facts

• For a signature 𝐿, the set of 𝐿-formulas has a recursive definition (Defini-
tion 5.1.1). An 𝐿-sentence is an 𝐿-formula with no free variables.

• Being true in a structure also has a recursive definitions (Definition 5.2.1).

• The Substitution Lemma for Formulas: for a structure 𝑆, a formula 𝐴(𝑥),
and a term 𝑡, 𝐴(𝑡) is true in 𝑆 iff 𝐴(𝑥) is true of the denotation of 𝑡 in 𝑆.

• For a set of 𝐿-formulas 𝑋:

– A model of 𝑋 is a structure in which every formula in 𝑋 is true.
– 𝑋 is (semantically) consistent iff 𝑋 has a model.
– A formula 𝐴 is a logical consequence of 𝑋 (written 𝑋 ⊨ 𝐴) iff 𝐴 is

true in every model of 𝑋.

• A theory is the set of all logical consequences of some set of sentences, which
are called axioms.

– The theory of a structure 𝑆 (written Th𝑆) is the set of all sentences
that are true in 𝑆.

214 CHAPTER 5. TRUTH AND CONSEQUENCE

– A set of sentences 𝑋 is the theory of some structure iff 𝑋 is a consistent,
negation-complete theory.

Chapter 6

The Inexpressible

If you have not realized that not all things can be
verbally expressed, then you will lack the look of the
Buddhas and Ancestors, and you will lack the bones
and marrow of the Buddhas and Ancestors.

Dōgen (1200–1253), The Shōbōgenzō, “Dotoku”
(Expression of the True Principles, “The Moral Way”)

This chapter works up to two important results about the limits of what can be said.
Truth in a structure cannot be described within that same structure. More generally
no theory can fully describe itself. (For concreteness, we’re workingwith first-order
theories, but it turns out that not very many of the main points in this chapter turn
on that detail. Similar facts hold for many other kinds of precise logical theories.)

Before we can state these limits on expressibility, we’ll think about the “expressive
power” of logic more generally. What kinds of things—in particular, what sets
and functions—can be described within a structure? What sets and functions can a
theory represent?

6.1 Explicit Definitions

We have been gradually formalizing more and more of the things we do when we
are doing logic, and speaking and reasoning more generally. First we introduced
terms, as a toy model of our practice of naming things. Then we introduced first-
order formulas and sentences, as a toy formal model of our practice of saying things

215

216 CHAPTER 6. THE INEXPRESSIBLE

about what the world is like. Then we introduced logical consequence and theories
and axioms, as a toy formal model of valid reasoning, particularly when we deduce
conclusions from premises.

Now we will formalize yet another important thing we do: our practice of giving
definitions. We have been doing this kind of thing since way back in Chapter 1. For
example, we said things like this:

For any sets 𝐴 and 𝐵, 𝐴 is a subset of 𝐵 iff every element of 𝐴 is an
element of 𝐵.

When we do this, some magic happens. Before we said this incantation, “subset”
was meaningless. We couldn’t use the word in our proofs, or in our definitions, or
in true or false statements about the world. After we said it, though, we could do
all of those things. Our language has expanded. Not only that, but our knowledge
has expanded: we immediately know some important facts about subsets, “by def-
inition”. For a start, we know that the thing we just said was true: if 𝐴 is a subset
of 𝐵, then every element of 𝐴 is an element of 𝐵, and vice versa. And we went on
to derive other important truths about subsets just from this definition, such as that
every set is a subset of itself.

This is very similar word-magic to what we discussed in Section 5.1. In our proofs,
we often say things like this:

Let 𝑛 be any number.

Before we say this, n might be a meaningless symbol. But after we say it, we can
use n just like any other term in our language. Again, our language expands.

Let’s think about how we can formalize this magic in the context of our formal
theories. Look again at our example:

𝐴 is a subset of 𝐵 ⟺ every element of 𝐴 is an element of 𝐵.

On the left-hand side, we introduce our new predicate, “subset”, which is supposed
to pick out a certain relation between sets. On the right-hand side, we have an alter-
native way of expressing this same relationwithout using the word “subset”. This is
the simplest kind of definition (not the only kind!)—it is called an explicit definition.
In this kind of definition, we already have some equivalent way of describing the
relation in our old language. We can think of the new word “subset” as effectively
just an abbreviation for this more complex description.

Similarly, we might say:

A number 𝑛 is even iff there is some number 𝑘 such that 𝑛 = 𝑘 + 𝑘.

6.1. EXPLICIT DEFINITIONS 217

(Notice that this explicit definition of even is different from the recursive definition
of even that we gave in Section 2.2. We will get to recursive definitions in Sec-
tion 6.4.) We can also formalize this definition using first-order logic: the formula
∃y y + y = x

is true of every even number in the natural number structure ℕ, and it is not true
of any odd number. Accordingly, even though the language of arithmetic does not
include any basic predicate that applies to just the even numbers, it does have a way
of defining the even numbers, using this formula. In short, we can say that the set
of even numbers is definable in ℕ.

6.1.1 Definition
Let 𝑆 be an 𝐿-structure, and let 𝑋 ⊆ 𝐷𝑆 be a set of elements of the domain of 𝑆.
We say that 𝑋 is definable in 𝑆 iff there is an 𝐿(𝑥)-formula 𝐴(𝑥) such that

𝑑 ∈ 𝑋 iff 𝐴(𝑥) is true of 𝑑 in 𝑆 for every 𝑑 ∈ 𝐷𝑆

Similarly, a set of pairs 𝑋 ⊆ 𝐷𝑆 ×𝐷𝑆 is definable in 𝑆 iff there is an 𝐿(𝑥, 𝑦)-formula
𝐴(𝑥, 𝑦) such that

(𝑑1, 𝑑2) ∈ 𝑋 iff 𝐴(𝑥, 𝑦) is true of (𝑑1, 𝑑2) in 𝑆 for every (𝑑1, 𝑑2) ∈ 𝐷𝑆 × 𝐷𝑆

And so on for sets of 𝑛-tuples of any length.

6.1.2 Example
(a) The set of prime numbers is definable in ℕ. This is because the following

formula is true of all and only the prime numbers:
x ≠ suc 0 & ∀y (∃z (x = y ⋅ z) → (y = 1 ∨ y = x))

(b) The set of pairs of strings that are both the same length is definable in 𝕊, as
shown by this 𝐿𝕊(x, y) formula:
x ≲ y & y ≲ x

(c) The set of all pairs of strings (𝑠, 𝑡) such that 𝑠 is an initial substring of 𝑡 is
definable in 𝕊:
∃z (x ⊕ z = y)

218 CHAPTER 6. THE INEXPRESSIBLE

6.1.3 Exercise
Show that the following are definable in 𝕊.

(a) The set of non-empty strings.

(b) The set of pairs (𝑠, 𝑡) such that 𝑠 is a substring of 𝑡.
(c) The set of pairs of strings (𝑠, 𝑡) such that 𝑡 is exactly twice as long as 𝑠.

6.1.4 Exercise
For any signature 𝐿 and any 𝐿-structure 𝑆, if the domain of 𝑆 is infinite, then it
has undefinable subsets. (In fact, it has uncountably many undefinable subsets!)

Besides properties and relations, we have also defined lots of functions. For ex-
ample, say we want to define the predecessor function for natural numbers, which
takes each number to the number immediately before it. Since zero doesn’t have a
number before it, we’ll let zero be its own honorary predecessor. In other words,

For any numbers 𝑚 and 𝑛, pred(𝑥) = 𝑦 iff either 𝑥 is the successor of
𝑦, or else 𝑥 and 𝑦 are both zero.

Again, we can formalize the right-hand side of this definition in the language of
arithmetic:
suc y = x ∨ (x = 0 & y = 0)

So we can say that the predecessor function is definable in ℕ.

6.1.5 Definition
Let 𝑆 be an 𝐿-structure, and let 𝑓 ∶ 𝐷𝑆 → 𝐷𝑆 be a function on its domain. We say
that 𝑓 is definable in 𝑆 iff the set of ordered pairs (𝑑1, 𝑑2) such that 𝑓(𝑑1) = 𝑑2 is
definable in 𝑆. (In Exercise 1.3.6 we called this set the graph of 𝑓 .) In other words,
there is some 𝐿(𝑥, 𝑦) formula 𝐴(𝑥, 𝑦) such that

𝐴(𝑥, 𝑦) is true of (𝑑1, 𝑑2) iff 𝑓(𝑑1) = 𝑑2 for every (𝑑1, 𝑑2) ∈ 𝐷𝑆 × 𝐷𝑆

We can split this up into two conditions. First:
𝐴(𝑥, 𝑦) is true of (𝑑, 𝑓𝑑) for every 𝑑 ∈ 𝐷𝑆

Second, 𝐴(𝑥, 𝑦) is functional in 𝑆, in the sense that for each 𝑑1 ∈ 𝐷𝑆 , there is
exactly one 𝑑2 ∈ 𝐷𝑆 such that 𝐴(𝑥, 𝑦) is true of (𝑑1, 𝑑2).
Similarly, if 𝑓 ∶ 𝐷𝑆 × 𝐷𝑆 → 𝐷𝑆 is a two-place function, we say 𝑓 is definable
in 𝑆 iff the set of ordered triples (𝑑1, 𝑑2, 𝑑3) ∈ 𝐷3

𝑆 such that 𝑓(𝑑1, 𝑑2) = 𝑑3 is
definable in 𝑆. And so on for functions with more arguments.

6.1. EXPLICIT DEFINITIONS 219

6.1.6 Example
(a) The function that takes each non-zero number to its predecessor, and which

takes zero to itself, is definable in ℕ. This is witnessed by the following
formula (with signature 𝐿ℕ(x, y):
suc y = x ∨ (x = 0 & y = 0)

(b) The function that takes each string to the same string repeated three times is
definable in 𝕊. This is demonstrated by the formula
x ⊕ x ⊕ x = y

6.1.7 Exercise
The “dots” function from Exercise 2.4.13, which takes each string to a string of
the same length containing just the repeated symbol •, is definable in 𝕊. (Hint.
Your function won’t be recursive this time. You can help yourself to things that
were defined in Example 6.1.2.)

6.1.8 Exercise
A formula 𝐴(𝑥, 𝑦) is functional in 𝑆 iff the sentence

∀x ∃!y 𝐴(x , y)

is true in 𝑆.

6.1.9 Exercise
Recall from Definition 3.5.11 that a function 𝑓 ∶ 𝐷𝑆 → 𝐷𝑆 is simply definable
iff there is some term 𝑡(𝑥) that has 𝑓 as its extension in 𝑆. Show that if 𝑓 is
simply definable, then it is also definable in the sense of Definition 6.1.5.

It can also be useful to define partial functions, which are not defined for the whole
domain of the structure. This is a little bit tricky, because the way we have defined
structures, we function symbols are always required to have total functions as their
extensions. So what we will say is that a partial function is definable iff there is
some way of extending it to a definable total function. Basically, we just don’t
care what the definition ends up doing beyond the domain of the function we are
defining.1

1Something to be careful about is that different textbooks use slightly different definitions and
terminology for “definable”, particularly when it comes to partial functions. The same goes even
more so for “representable”, which we will encounter in Section 6.9.

220 CHAPTER 6. THE INEXPRESSIBLE

6.1.10 Definition
Let 𝑋 ⊆ 𝐷𝑆 be a subset of the domain and 𝑓 ∶ 𝑋 → 𝐷𝑆 is a function, we say
that 𝑓 is definable iff there is some definable function 𝑔 ∶ 𝐷𝑆 → 𝐷𝑆 such that
𝑔(𝑑) = 𝑓(𝑑) for every 𝑑 ∈ 𝑋 in the domain of 𝑓 .

6.1.11 Example
(a) The function that takes each number 𝑛 ≥ 2 to its smallest prime divisor is

definable in ℕ. We already know that the set of prime numbers is definable,
so let’s introduce a new predicate Prime with this extension. We can use this
to show that the relation of being a prime divisor is also definable in ℕ, with
this defining formula:
Prime(y) & ∃z (y ⋅ z = x)

Then we can expand the language again with a two-place predicate
PrimeDivisor, which has the same extension as this formula. Next, we
have this formula in the expanded language:
PrimeDivisor(y, x) & ∀y₂ (PrimeDivisor(y₂, x) → y ≤ y₂)

The extension of this formula is the set of pairs (𝑚, 𝑛) such that 𝑛 is the greatest
prime divisor of 𝑚 (and 𝑚 ≥ 2, since otherwise 𝑚 has no prime divisors).

(b) The function that takes each non-empty string to its first symbol is definable
in 𝕊. We already showed that the set of length-one strings is definable, so we
can introduce a predicate Sym that applies to just these strings. Then we can
use this formula to define the function:
Sym(y) & ∃z (y ⊕ z = x)

Let’s look again at what happens when we state a definition, like this one:

A number 𝑛 is even iff there is a number 𝑘 such that 𝑛 = 𝑘 + 𝑘.

As we discussed above, we can formalize the right-hand side of this definition with
the formula ∃y y = x + x. But what is happeningwith the definition as a complete
sentence? We can formalize this, too, like this:
∀x (Even(x) ↔ ∃y y + y = x)

But this is not quite a sentence in the language of arithmetic. That language doesn’t
include a predicate Even. Rather, this is a sentence in an expansion of the language
of arithmetic, which adds in the new predicate Even. In general, when we define a
new expression, we expand our language. Symbols that may have beenmeaningless

6.1. EXPLICIT DEFINITIONS 221

before magically gain meanings.

Back in Section 3.5, we discussed how we can expand a signature by adding new
names, and we can expand a structure by assigning an extension to that new name.
In just the same way, we can expand a signature by adding a new predicate or
function symbol, and we can expand a structure by assigning extensions to the new
symbols.

6.1.12 Definition
Let 𝐿 be a signature.

(a) We call a signature 𝐿+ an expansion of 𝐿 iff 𝐿+ includes all of the names,
function symbols, and predicates from 𝐿, and possibly more besides. For
a token 𝐹 which does not already appear in 𝐿, 𝐿(𝐹) is the expansion of 𝐿
that we get by just adding the new predicate 𝐹 to 𝐿. Likewise, 𝐿(𝑓) is the
expanded signature we get by just adding the new function symbol 𝑓 to 𝐿.

(This notation requires that we make clear in context what kind of symbol we’re
adding to the language—whether it is a new variable, or a one-place or two-place
function symbol, or a predicate. Usually our choice of notation will make this
clear—whether we call it something like 𝑥 or 𝑓 or 𝐹 .)

(b) Let 𝐿+ is an expansion of 𝐿, let 𝑆 be an 𝐿-structure, and let 𝑆+ be an 𝐿+-
structure. We say that 𝑆+ is an expansion of 𝑆 iff 𝑆+ has the same domain
as 𝑆, and the same extensions for each name, function symbol, and predicate
in 𝐿.

We use the notation 𝑆[𝐹 ↦ 𝑋] for the 𝐿(𝐹)-structure that expands 𝑆 by
assigning the set of objects 𝑋 ⊆ 𝐷𝑆 as the extension of the new predicate 𝐹 .
Similarly, for a function 𝑔 ∶ 𝐷𝑆 → 𝐷𝑆 , 𝑆[𝑓 ↦ 𝑔] is the 𝐿(𝑓)-structure that
expands 𝑆 by assigning the function 𝑔 as the extension of the new function
symbol 𝑓 .

Definitions correspond to a particularly important kind of expanded structure. Re-
member that a structure represents an interpretation of a language. When we explic-
itly define a new predicate, we switch from one structure to an expanded structure,
with the meaning of the new predicate fixed by its definition.

6.1.13 Definition
Let 𝑆 be an 𝐿-structure, and let 𝑆+ be an 𝐿+-structure, where 𝐿+ expands 𝐿. We
call 𝑆+ a definitional expansion of 𝑆 iff 𝑆+ is an expansion of 𝑆, such that, the
extension in 𝑆+ of every 𝐿+-symbol is definable in 𝑆. In other words:

222 CHAPTER 6. THE INEXPRESSIBLE

(a) For each one-place 𝐿+-predicate 𝐹 , there is some 𝐿(𝑥)-formula 𝐴(𝑥) such
that, for each 𝑑 ∈ 𝐷𝑆 ,

𝑑 ∈ [𝐹]𝑆+ iff 𝐴(𝑥) is true of 𝑑 in 𝑆

(b) For each two-place 𝐿+-predicate 𝑅, there is some 𝐿(𝑥, 𝑦)-formula 𝐴(𝑥, 𝑦)
such that, for each (𝑑1, 𝑑2) ∈ 𝐷𝑆 × 𝐷𝑆 ,

(𝑑1, 𝑑2) ∈ [𝑅]𝑆+ iff 𝐴(𝑥, 𝑦) is true of (𝑑1, 𝑑2) in 𝑆

(c) For each one-place 𝐿+-function symbol 𝑓 , there is some 𝐿(𝑥, 𝑦)-formula
𝐴(𝑥, 𝑦) which is functional in 𝑆, and, for each 𝑑 ∈ 𝐷𝑆 ,

𝐴(𝑥, 𝑦) is true of (𝑑, 𝑓𝑑) in 𝑆

(d) For each two-place 𝐿+-function symbol 𝑓 , there is some 𝐿(𝑥, 𝑦, 𝑧)-formula
𝐴(𝑥, 𝑦, 𝑧) which is functional in 𝑆, and for each (𝑑1, 𝑑2) ∈ 𝐷𝑆 × 𝐷𝑆 ,

𝐴(𝑥, 𝑦, 𝑧) is true of (𝑑1, 𝑑2, 𝑓 (𝑑1, 𝑑2)) in 𝑆

When we expand our language with an explicit definition, the incantation we
spoke—

A number 𝑛 is even iff there is some number 𝑘 such that 𝑛 = 𝑘 + 𝑘
not only becomes meaningful, but it is also true in the new expanded language.

6.1.14 Exercise
Let 𝑆 be an 𝐿-structure.

(a) Let 𝐴(𝑥) be an 𝐿(𝑥)-formula.
Let 𝑋 be the set of all 𝑑 ∈ 𝐷𝑆 such that 𝐴(𝑥) is true of 𝑑 in 𝑆. (This
is called the extension of 𝐴(𝑥).) Let 𝐹 be a predicate not in 𝐿. Then
𝑆[𝐹 ↦ 𝑋] is a definitional expansion of 𝑆. Check that

∀x (𝐹 (x) ↔ 𝐴(x))

is true in 𝑆[𝐹 ↦ 𝑋].
(b) Let 𝐴(𝑥, 𝑦) be an 𝐿(𝑥, 𝑦)-formula which is functional in 𝑆, and for each

𝑑 ∈ 𝐷𝑆 , let 𝑔(𝑑) be the unique 𝑑′ ∈ 𝐷𝑆 such that 𝐴(𝑥, 𝑦) is true of (𝑑, 𝑑′)
in 𝑆. Let 𝑓 be a new function symbol. Check that

6.1. EXPLICIT DEFINITIONS 223

∀x ∀y(𝑓 (x) = y ↔ 𝐴(x , y))

is true in the definitional expansion 𝑆[𝑓 ↦ 𝑔].

An important fact about explicit definitions is that, in principle, we could do without
them. We could just replace our defined predicate with the original formula we used
to define it. Take our earlier example of an explicit definition:

For any sets 𝐴 and 𝐵, 𝐴 is a subset of 𝐵 iff every element of 𝐴 is an
element of 𝐵.

One of the things this let us prove was this:

For every set 𝐴, 𝐴 is a subset of 𝐴.

But instead of saying that, using the word subset, we could instead “unpack the
definition”, and say this:

For every set 𝐴, every element of 𝐴 is an element of 𝐴.

(And this is a logical truth!)

To make the idea of “unpacking definitions” precise, we can use a new kind of sub-
stitution: instead of replacing a variablewith some term, we can replace a predicate
with some formula. For example, consider the formula
(Even(x) & Prime(x)) → x = 2

This uses two predicates: Even and Prime. We have a definition for Even, and we
can “unpack” it by replacing each occurrence of Even(x) with the formula
∃y (y + y = x)

The result looks like this:
(∃y (y + y = x) & Prime(x)) → x = 2

Like before, we can officially define this kind of substitution using recursion. But
the details are tedious, and not especially illuminating. For completeness’s sake,
we’ll put them in the starred Section 6.2.

This is also true for definitions of functions: they don’t really increase the expressive
power of our language—they just lets us say things more succinctly. We can always
“unpack” the definition of the function. But this isn’t quite as straightforward as with
sets. For example, consider the definition of the predecessor function again:

224 CHAPTER 6. THE INEXPRESSIBLE

∀x ∀y (pred x = y ↔ (suc y = x ∨ (x = 0 & y = 0)))

Now consider some sentence using pred, like this one:
∀x (pred x ≤ x)

When we unpack the definition of pred, we get this sentence:
∀x ∃y ((suc y = x ∨ (x = 0 & y = 0)) & y ≤ x)

Notice that we can’t simply replace every occurrence of a function symbol with its
defining formula—formulas and function symbols have different syntax. Function
symbols show up as parts of terms, but formulas don’t. So the rule for “unpacking”
definitions of functions is a bit more complicated. What we did instead is replace
the term pred x with a new variable. Instead of saying “pred 𝑥 is …”, instead we
can say “there is some 𝑦 that stands in the predecessor relation to 𝑥 such that 𝑦 is
…”.

Here is the basic recipe for how to do it. Say we have a function symbol 𝑓 with a
defining formula 𝐹 (𝑥, 𝑦).

1. Look for an occurrence of 𝑓 in your formula. If there aren’t any, then we’re
done.

2. Otherwise, our formula must contain some atomic formula (either an identity
formula or a predication) which has the form 𝐴(𝑓(𝑎)), for some atomic for-
mula 𝐴(𝑥) and some term 𝑎. We can replace this atomic formula with a new
formula like this, where 𝑦 is a new variable:

∃ 𝑦 (𝐹 (𝑎, 𝑦) & 𝐴(𝑦))

This is equivalent (in our structure 𝑆) to the atomic formula we started with,
and so the result of swapping it into the place of the atomic formula in our
“big” formula is also equivalent.

3. Repeat until there are no remaining occurrences of 𝑓 .

At each step, we have removed one occurrence of 𝑓 from the formula. So eventually
we’ll be done.

This idea is made into a more precise recursive definition in Section 6.2.

6.1.15 Proposition
Let 𝑆+ be a definitional expansion of 𝑆. For every 𝐿+(𝑥)-formula 𝐴(𝑥), there is a

6.2. UNPACKING DEFINITIONS* 225

corresponding 𝐿(𝑥)-formula, called the translation of 𝐴(𝑥), such that:

𝐴(𝑥) is true of 𝑑 in 𝑆+ iff 𝐴∗(𝑥) is true of 𝑑 in 𝑆 for every 𝑑 ∈ 𝐷𝑆

Proof
See Section 6.2. □

Proposition 6.1.15 tells us that if we define new predicates and function symbols,
in a structure 𝑆, then any formula in the expanded language is equivalent to some
formula in the original language. Intuitively, definitions don’t add any extra ex-
pressive power to our language. Anything you could say using the new predicate
is something you could have said instead by unpacking the definition of that pred-
icate in the original language. Defining new words makes no difference to what
properties we can express—only how long it takes us to express them.

Practically speaking, this means that once we have shown that a set is definable in a
structure, we can go ahead and add a basic predicate to our language which stands
for that set—we know that we’ll always be able to get rid of it in the end. Similarly
for definable functions.

6.1.16 Exercise
Use Proposition 6.1.15 to show that, if a set 𝑋 ⊆ 𝐷𝑆 is definable in a definitional
expansion of a structure 𝑆, then 𝑋 is also definable in 𝑆.

We haveworked a lot with some very simple languages—the language of arithmetic,
and the language of strings. Each of these has a simple set of constants, function
symbols, and predicates. But it turns out that these simple languages are really quite
powerful: we can express a lot of interesting properties, relations, and functions
on numbers and strings using them. Let’s start simple. We will turn to this in
Section 6.4.

6.2 Unpacking Definitions*

UNDER CONSTRUCTION

6.2.1 Definition
Let 𝐴(𝐹) be a formula in the expanded language 𝐿(𝐹), where 𝐹 is a new one-
place predicate. Let 𝐵(𝑥) be an 𝐿(𝑥)-formula. Then we define the (predicate)
substitution instance or translation 𝐴(𝐹 ↦ 𝐵) recursively as follows. (Hopefully
there are no surprises here.)

226 CHAPTER 6. THE INEXPRESSIBLE

1. Identity. For 𝐿-terms 𝑎 and 𝑏,

(𝑎 = 𝑏)(𝐹 ↦ 𝐵) = 𝑎 = 𝑏

2. Predication. For an 𝐿-term 𝑎,

(𝐹(𝑎))(𝐹 ↦ 𝐵) = 𝐵(𝑎)

For any one-place predicate 𝐺 other than 𝐹 ,

(𝐺(𝑎))(𝐹 ↦ 𝐵) = 𝐺(𝑎)

3. Two-place predication. This case goes similarly.

4. Negation. For an 𝐿(𝐹)-formula 𝐴,

(¬𝐴)(𝐹 ↦ 𝐵) = ¬𝐴(𝐹 ↦ 𝐵)

5. Conjunction. Exercise.

6. Quantification. For an 𝐿(𝐹 , 𝑦)-formula 𝐴,

(∀𝑦 𝐴)(𝐹 ↦ 𝐵) = ∀𝑦 𝐴(𝐹 ↦ 𝐵)

What is important about this notion of “plugging something into a predicate” is that
it has the right semantics. Say we have a sentence that uses some predicate symbol.
If we have another formula with the same meaning as that predicate, then replacing
the predicate with the formula should give us a sentence with the same meaning as
the one we started with. This is an analogue of our familiar Substitution Lemmas
for terms and formulas.

6.2.2 Lemma (Substitution Lemma for Predicates)
Let 𝑆 be an 𝐿-structure. Let 𝐴 be an 𝐿(𝐹)-formula, where 𝐹 is a new one-place
predicate not in 𝐿. Let 𝐵(𝑥) be an 𝐿(𝑥)-formula, and let 𝑋 be the extension of 𝐵(𝑥)
in 𝑆. Then:

𝐴(𝐹 ↦ 𝐵) is true in 𝑆 iff 𝐴 is true in the expanded structure 𝑆(𝐹 ↦ 𝑋)

To put that another way,

⟦𝐴(𝐹 ↦ 𝐵)⟧𝑆 = ⟦𝐴⟧𝑆(𝐹 ↦⟦𝐵⟧𝑆)

6.2. UNPACKING DEFINITIONS* 227

Proof
We can prove this by induction on formulas, using the recursive definition of sub-
stitution for predicates. The proof is long and tedious, but it’s a good exercise for
checking that we really understand how the definitions all work.

1. Identity. For 𝐿-terms 𝑎 and 𝑏, by Definition 6.2.1

(𝑎 = 𝑏)(𝐹 ↦ 𝐵) = 𝑎 = 𝑏

TODO Finish this. □

6.2.3 Exercise
Fill in this missing steps of the proof of Lemma 6.2.2.

Notice that this same fact holds if 𝐴 has free extra variables in it. We can put it like
this.

6.2.4 Proposition
Let 𝑆 be an 𝐿-structure. Let 𝑥 be a variable and let ̄𝑦 be a sequence of variables.
Let 𝐴 be an 𝐿(𝐹 , ̄𝑦)-formula. Let 𝐵(𝑥) be an 𝐿(𝑥)-formula, and let

𝑋 = ⟦𝐵(𝑥)⟧𝑆

That is, 𝑋 is the extension of 𝐵(𝑥) in 𝑆. Then the extension of 𝐴(𝐹 ↦ 𝐵) in 𝑆 (in
which we have replaced the predicate 𝐹 with the formula 𝐵(𝑥) everywhere) is the
same as the extension of 𝐴 in 𝑆(𝑋). In short:

⟦𝐴(𝐹 ↦ 𝐵)⟧𝑆 = ⟦𝐴⟧𝑆(𝐹 ↦𝑋)

This follows from Lemma 6.2.2. Things look a little more complicated, because we
have to do some extra variable-management, but it goes essentially the same way.
For example, suppose 𝐴 is an 𝐿(𝐹 , 𝑦)-formula. Let 𝑆 be any 𝐿 structure, and let
𝑑 be any object in its domain. Then let 𝑆′ be the expanded 𝐿(𝑦)-structure 𝑆(𝑑).
Then we can apply Lemma 6.2.2 to the signature 𝐿(𝑦):

𝐴(𝐹 ↦ 𝐵) is true in 𝑆(𝑑) iff 𝐴 is true in 𝑆(𝑑)(𝐹 ↦ ⟦𝐵(𝑥)⟧𝑆(𝑑))

Since 𝐵(𝑥) doesn’t use the variable 𝑦, ⟦𝐵(𝑥)⟧𝑆(𝑑) = ⟦𝐵(𝑥)⟧𝑆 . So we can rewrite
this:

𝐴(𝐹 ↦ 𝐵) true of 𝑑 in 𝑆 iff 𝐴 is true of 𝑑 in 𝑆(𝐹 ↦ ⟦𝐵(𝑥)⟧𝑆)

228 CHAPTER 6. THE INEXPRESSIBLE

Now let’s consider how all of this goes for function symbols.
TODO. Finish writing this up.

6.3 Defining Quotation

Back in Exercise 3.2.16 we noted that every string 𝑠 has a corresponding term in
the language of strings that denotes 𝑠. We call this term the quotation of 𝑠. For
example, the quotation of ABC is the term "" ⊕ "A" ⊕ "B" ⊕ "C". Here is one
way of defining this function.

6.3.1 Definition
The quotation function takes each string 𝑠 to a term in the language of strings,
which we write ⟨𝑠⟩. This is defined recursively:

⟨()⟩ = ""

⟨(𝑠, 𝑎)⟩ = ⟨𝑠⟩ ⊕ 𝑐𝑎 for each string 𝑠 ∈ 𝕊 and symbol 𝑎 ∈ 𝔸

(Recall that 𝑐𝑎 is the name in the language of strings for the symbol 𝑎. For example,
𝑐A = "A".)

One of the things we will be showing is that the language of strings is actually
powerful enough to describe complicated syntactic operations. As a step in that
direction, we will start by showing that quotation is definable in 𝕊.

The definition we just gave is recursive. Wewill see in Section 6.4 that it is generally
possible to transform recursive definitions into explicit definitions in 𝕊. But it turns
out to be convenient to do this in a way that assumes that quotation is definable.
So to keep from getting stuck in a loop here, we’ll need to come up with a way to
redescribe quotation without any recursion—just in terms of the basic operations
of joining together strings and comparing lengths. This bit of logic engineering
involves a bit of hackery, but it isn’t too difficult.

We have usually been writing out terms using unofficial shortcuts, like “infix” no-
tation for ⊕, and dropping parentheses. For this part, though, we had better write
out our official labels explicitly, since it’s the official quotation function that we are
trying to define. For example, officially:

• The quotation of • is ⊕("","•").
• The quotation of ABC is ⊕(⊕(⊕("","A"),"B"),"C").

6.3. DEFINING QUOTATION 229

Let’s write the whole definition of quotation out again in its official form.

⟨()⟩ = ""

⟨(𝑠, 𝑎)⟩ = ⊕(⟨𝑠⟩,𝑐𝑎) for each string 𝑠 ∈ 𝕊 and symbol 𝑎 ∈ 𝔸

But looking at how this works, we can describe the pattern for quotation terms in a
different way, without using recursion. If 𝑠 is any string, then we can see that

⟨𝑠⟩ = ⊕(⋯ ⊕(⎵⎵
𝑛 times

⊕ "" ⊕ ,𝑐1)⋯,𝑐𝑛)

where 𝑐1, …, 𝑐𝑛 are the names for each of the symbols that appear in 𝑠, in order.
That means we can define quotation using a little hack. We chose all of the names
𝑐𝑎 for single symbols to have the same length: each of them is three symbols long.
That means that each “chunk” in the quotation term of the form ,𝑐𝑖) is exactly five
symbols long. We can use this fact to “line up” each symbol with the relevant part
of its string representation. In order to check if a string 𝑡 is the quotation of 𝑠, we
just have to compare substrings of the string 𝑠 with substrings of 𝑡 which are exactly
five times as long.

6.3.2 Exercise
Let 𝑠 be any string. Then the quotation ⟨𝑠⟩ is the unique string such that there
are strings 𝑡 and 𝑢 such that

(i) 𝑠 = 𝑡 ⊕ "" ⊕ 𝑢
(ii) 𝑡 is exactly twice as long as 𝑠, 𝑢 is exactly five times as long as 𝑠, and
(iii) For any string 𝑠′ ∈ 𝕊 and symbol 𝑎 ∈ 𝔸, if (𝑠′, 𝑎) is an initial substring

of 𝑠, then there are strings 𝑡′ and 𝑢′ such that 𝑡′ is exactly twice as long as
𝑠′, 𝑢′ is exactly five times as long as 𝑠′, 𝑡′ ⊕ ⊕(is an initial substring of 𝑡,
and 𝑢′ ⊕ , ⊕ 𝑐𝑎 ⊕) is an initial substring of 𝑢′.

Hint. This can be proved by induction, using the original recursive definition of
the quotation function.

6.3.3 Exercise
(a) The relation

𝑠 is exactly five times as long as 𝑡
is definable in 𝕊.

(b) The relation

230 CHAPTER 6. THE INEXPRESSIBLE

𝑠 and 𝑎 are strings, 𝑎 consists of a single symbol, and 𝑠 = 𝑐𝑎

is definable in𝕊. For example, this relation applies to each of the following
pairs

("A", A)
("B", B)
(quo, ")
(lpa, ()
("", ())

6.3.4 Exercise
The function that takes each string 𝑠 to its quotation ⟨𝑠⟩ is definable in 𝕊.

6.4 Recursive Definitions

In Section 6.1 we discussed explicit definitions. But we have also extensively used
a different kind of definition in this book. For example, consider the set of terms
in the language of arithmetic. We defined this set of strings recursively, using the
following four rules:

0 is a term
𝑡 is a term

suc 𝑡 is a term

𝑡1 is a term 𝑡2 is a term
(𝑡1 + 𝑡2) is a term

𝑡1 is a term 𝑡2 is a term
(𝑡1 ⋅ 𝑡2) is a term

Every term in the language of arithmetic is the result of applying these rules some
number of times. Each term can be built up step by step, where each step uses one
of these rules to build up a more complicated string from earlier steps.

It turns out that the language of strings is powerful enough to capture recursive
definitions like this. In fact, each recursive definition in the language of strings can
be reduced to an equivalent explicit definition. This is what we will work through
now—though, to keep from getting too bogged down in the details, we will set some
of them aside in the starred section Section 6.3.

In particular, the syntax we have done in this book uses recursive definitions all
over the place—terms, formulas, quotation, substitution. So an important upshot,

6.4. RECURSIVE DEFINITIONS 231

which we will take up further in Section 6.6, is that syntax can be formalized in our
simple language of strings.

Take the recursive definition of the terms in the language of arithmetic again. A
term in this language is anything you can reach by applying the rules step by step,
any finite number of times. So we can try to make this idea precise. For example,
(0 + (suc 0 + 0)) is a term. We can show this by considering a list of terms:
0
suc 0
(suc 0 + 0)
(0 + (suc 0 + 0))

Each line in this sequence is derived by applying some rule from the recursive def-
inition of terms, where if we need any “inputs” to the rule, we find them on earlier
lines. We get 0 from the zero rule (which is a base case). Then we get suc 0 by
applying the suc rule to the previous line. Then we get (suc 0 + 0) by applying
the + rule to both of these lines. Finally we get (0 + (suc 0 + 0)) by applying
the + rule to lines 1 and 3.

Let’s call a sequence of strings like this a derivation. Intuitively, a derivation spells
out the results of repeatedly applying the formation rules. Each element of the
sequence is the result of applying one of the formation rules to earlier elements of
the sequence.

6.4.1 Exercise
A sequence of strings (𝑠1, …, 𝑠𝑁) is a𝐿ℕ-derivation (or just derivation for short)
iff for each 𝑘 ≤ 𝑁 , one of the following four conditions holds:

• 𝑠𝑘 = 0,
• For some 𝑖 < 𝑘, 𝑠𝑘 = suc 𝑠𝑖,
• For some 𝑖 < 𝑘 and 𝑗 < 𝑘, 𝑠𝑘 = (𝑠𝑖 + 𝑠𝑗), or
• For some 𝑖 < 𝑘 and 𝑗 < 𝑘, 𝑠𝑘 = (𝑠𝑖 ⋅ 𝑠𝑗).

Show that for any string 𝑠, 𝑠 is a term in the language of arithmetic iff 𝑠 is an
element of some derivation.

Hint. Each direction of the “iff” uses a different kind of induction. It may be
helpful to use the following facts, which follow straightforwardly from the defi-
nition.

(a) If 𝑠 and 𝑡 are derivations, then 𝑠 ⊕ 𝑡 is also a derivation.

(b) Any initial subsequence of a derivation is also a derivation.

232 CHAPTER 6. THE INEXPRESSIBLE

This means that in order to write down something equivalent to the recursive defini-
tion of terms in the language of arithmetic, it’s enough to come up with a formalized
definition of a derivation. And this is something we can do in just the language of
strings. We can do it by representing a derivation as one big string, instead of a
sequence of smaller strings.

We can let an 𝐿ℕ-derivation string be the result of separating the strings in a deriva-
tion by newlines, and then joining them all together. (Notice that no term in the
language of arithmetic uses any newline symbols itself.)

6.4.2 Exercise
(a) The set of pairs (𝑠, 𝑡) such that 𝑠 is a complete line in the string 𝑡 is definable

in 𝕊. (That is, either 𝑠 appears at the beginning of 𝑡 followed by a newline,
𝑠 appears at the end of 𝑡 immediately after a newling, or else 𝑠 appears
somewhere in the middle of 𝑡 with a newline both before and after it.)

(b) The set of pairs (𝑠, 𝑡) such that 𝑠 consists of the first 𝑛 lines of 𝑡, for some
𝑛, is definable in 𝕊.

(c) The set of all 𝐿ℕ-derivation strings is definable in 𝕊.

(d) The set of terms in the language of arithmetic is definable in 𝕊.

We can use the same idea to show that for any finite signature 𝐿, the set of all 𝐿-
terms is definable. A particularly important case is the language of strings—we
will come back to this in Section 6.6. We can also use the same idea for lots of
other recursive definitions. First we define a notion of a derivation corresponding
to the rules in the recursive definition, and then we can use 𝐿𝕊 to define a set of
derivation strings.

The way we used strings to represent derivations for terms is simple: just stick all
the elements of a derivation sequence together as lines in one big string. That’s
good enough for terms, but it’s not quite general enough for everything we need.
The trouble is that we also will want to write down recursive definitions of sets of
strings that are allowed to contain newline symbols. If we just stick these strings
together, we’ll end up with ambiguity—the same string would represent more than
one different derivation, and this will mess up our definition.

Fortunately, we have already figured out a way to solve this problem, back in Sec-
tion 4.1. The trick is to first replace each string in a sequence with its quotation—a
term in the language of strings, which is guaranteed not to include any newlines. For
example, the quotation of AB is "" ⊕ "A" ⊕ "B". The quotation of the multiline
string

6.4. RECURSIVE DEFINITIONS 233

AB
C

is the string "" ⊕ "A" ⊕ "B" ⊕ new ⊕ "C"—which does not contain any new-
lines. Then we can stick together all these quoted strings as lines in one big string.
Fortunately, we have already shown in Exercise 6.3.4 that the function that takes
each string to its quotation is definable.

Now we can represent any sequence of strings with a single string: just take the
sequence (𝑠1, …, 𝑠𝑛) to the string ⟨𝑠1⟩ ⊕ new⊕⋯ ⊕ new⊕⟨𝑠𝑛⟩ ⊕ new. (The ex-
tra newline at the end will help keep our definitions uniform.) Use the notation
⟨(𝑠1, …, 𝑠𝑛)⟩ for this string representation. We just need to check a few things.

6.4.3 Exercise
(a) For any sequences of strings 𝑠 and 𝑡, ⟨𝑠 ⊕ 𝑡⟩ = ⟨𝑠⟩ ⊕ ⟨𝑡⟩. Joining together

the strings that represent two sequences gives us the same thing as the
string representation for joining the two sequences together.

(b) The set of pairs of strings (𝑠, 𝑡) such that 𝑠 and 𝑡 each represent sequences,
and 𝑠 represents an initial subsequence of the sequence represented by 𝑡,
is definable in 𝕊.

(c) The set of pairs of strings (𝑠, 𝑡) such that 𝑠 is an element of the sequence
represented by 𝑡 is definable in 𝕊. (Use Exercise 6.3.4.)

Now we can define all sorts of derivation sequences, for all sorts of recursive defi-
nitions.

6.4.4 Example
The set of palindromes is defined recursively as follows:

() is a palindrome

For each symbol 𝑎 ∈ 𝔸,
(𝑎) is a palindrome

And for each symbol 𝑎 ∈ 𝔸,

𝑠 is a palindrome
(𝑎) ⊕ 𝑠 ⊕ (𝑎) is a palindrome

Show that the set of palindromes is definable in 𝕊.

234 CHAPTER 6. THE INEXPRESSIBLE

Proof sketch
Let a palindrome-derivation be any sequence of strings (𝑠1, …, 𝑠𝑛) with the property
that, for each 1 ≤ 𝑘 ≤ 𝑛, one of the following three cases holds:

(i) 𝑠𝑘 = ();
(ii) 𝑠𝑘 = (𝑎) for some 𝑎 ∈ 𝔸;
(iii) There is some 𝑖 < 𝑘 such that 𝑠𝑘 = (𝑎) ⊕ 𝑠𝑖 ⊕ (𝑏).

We can check that a string is a palindrome iff it is an element of some palindrome-
derivation. We can also show that the set of string representations for palindrome-
derivations is definable in 𝕊. [TODO. Add a bit more detail here.]

Consider a definitional expansion of 𝕊 where DerivElem is a two-place predicate
that applies to just the ordered pairs (𝑠, 𝑡) where 𝑡 is a string representation for a
palindrome-derivation that includes 𝑠 as an element. The set of palindromes is the
extension in this structure of the 𝐿𝕊(x)-formula
∃y DerivElem(x, y)

Moreover, anything definable in a definitional expansion of 𝕊 is definable in 𝕊. □

We can also extend these same ideas to capture recursive definitions of functions.

6.4.5 Example
Consider the function

𝑓(𝑠) = ⟨length 𝑠⟩ for every 𝑠 ∈ 𝕊

which takes each string to the numeral that stands for the length of 𝑠. For example:

𝑓(•) = suc 0

𝑓(ABC) = suc suc suc 0

Show that this function 𝑓 is definable in 𝕊.

Proof sketch
First, let’s write down a recursive definition of this function.

𝑓() = 0

𝑓(𝑠, 𝑎) = suc 𝑓(𝑠) for each 𝑎 ∈ 𝔸

Next, remember that what it takes for a function 𝑓 to be definable is just for the set
of all ordered pairs (𝑠, 𝑓𝑠) ∈ 𝕊 × 𝕊 to be definable. Call this set 𝑋. We can turn the

6.4. RECURSIVE DEFINITIONS 235

recursive definition of the function 𝑓 into a recursive definition of this set 𝑋. (This
is similar to what we did in Section 2.3.)

((), 0) ∈ 𝑋
(𝑠, 𝑡) ∈ 𝑋

((𝑠, 𝑎), suc 𝑡) ∈ 𝑋

Let an 𝑓 -derivation be a sequence of strings (𝑠1, …, 𝑠𝑁) in which each 𝑠𝑘 is the
string representation for some ordered pair of strings (𝑥, 𝑦) which has one of the
following two properties:

(i) 𝑥 = () and 𝑦 = 0, or else

(ii) There is some 𝑖 < 𝑘 such that 𝑠𝑖 is the string representation for an ordered
pair (𝑥′, 𝑦′), and

𝑥 = (𝑥′, 𝑎) for some symbol 𝑎 ∈ 𝔸,
𝑦 = suc 𝑦′

We can then check (using two simple inductive arguments) that for any strings 𝑥
and 𝑦,

len 𝑥 = 𝑦 iff the string representation for the pair (𝑥, 𝑦) is an element
of some 𝑓 -derivation.

Then all we need to do is translate this definition of 𝑓 -derivation into the language
of strings, in the same way as in Exercise 6.4.2. □

In general, any property, relation, or function that has a recursive definition in terms
of definable operations on strings can also be defined in the string structure 𝕊. But
the precise statement of this general claim, and its proof, is rather abstract. This
is in the starred section Section 6.5. The main idea is that whenever we want to
translate a recursive definition into the language of strings, we can always do it by
defining the corresponding kind of derivation sequence.

Even though the basic language of strings is very simple—it just has basic symbols
for the empty string, each length-one string, the “join” operation, and the “no longer
than” relation—it turns out to be a pretty powerful tool for describing languages. It
is powerful enough to define simple languages, like the terms of arithmetic, and
basic operations on these terms. It is even powerful enough to define the language
of strings itself! In Section 6.6 we will consider some important consequences of
this idea.

236 CHAPTER 6. THE INEXPRESSIBLE

6.5 Recursive Definitions, in General*

Let’s consider how we can generalize the idea from Section 6.4 to other recursive
definitions.

Suppose 𝐹 is a set of operations on some set 𝐴. That is, each element 𝑓 ∈ 𝐹 is
a function from 𝐴𝑛 → 𝐴 for some 𝑛 or other. Recall from Section 2.3 that there
is a (unique) 𝐹 -recursively defined set 𝑋 ⊆ 𝐴, which is closed under all of the 𝐹
operations and which has inductive property that corresponds to 𝐹 . That inductive
property tells us that we can show that every element of 𝑋 has a certain property
by showing

6.5.1 Definition
Let 𝐹 be a set of operations on a set 𝐴. An 𝐹 -derivation is a sequence (𝑥1, …, 𝑥𝑁)
such that for each number 𝑘 ≤ 𝑁 , there is some 𝑛-place operation 𝑓 ∈ 𝐹 and some
numbers 𝑖1, …, 𝑖𝑛 < 𝑘 such that

𝑥𝑘 = 𝑓(𝑥𝑖1 , …, 𝑥𝑖𝑛)

6.5.2 Exercise
Check:

(a) For any 𝐹 -derivations 𝑠 and 𝑡, the joined sequence 𝑠 ⊕ 𝑡 is also an 𝐹 -
derivation.

(b) If 𝑠 is an 𝐹 -derivation, any initial subsequence of 𝑠 is also an 𝐹 -derivation.

6.5.3 Exercise
Let 𝐹 be a set of operations on a set 𝐴. Let 𝑋 ⊆ 𝐴 be the 𝐹 -recursively defined
subset of 𝐴. Then for each 𝑎 ∈ 𝐴,

𝑎 ∈ 𝑋 iff 𝑎 is an element of some 𝐹 -derivation.

6.5.4 Exercise
Let𝐹 be a set of operations on𝕊. Suppose that each operation 𝑓 ∈ 𝐹 is definable
in 𝕊. Then the 𝐹 -recursively defined set of strings 𝑋 is also definable in 𝕊.

This also shows that recursively defined functions are definable in 𝕊 (as long as each
of its defining rules is definable), since each recursively defined function straight-
forwardly corresponds to a recursively defined set of ordered pairs.

6.6. REPRESENTING LANGUAGE 237

6.6 Representing Language

‘You are sad,’ the Knight said in an anxious tone: ’let
me sing you a song to comfort you.
‘Is it very long?’ Alice asked, for she had heard a
good deal of poetry that day.
‘It’s long,’ said the Knight, ‘but it’s very, very
beautiful. Everybody that hears me sing it—either it
brings the tears into their eyes, or else—’
‘Or else what?’ said Alice, for the Knight had made a
sudden pause.
‘Or else it doesn’t, you know. The name of the song is
called “Haddocks’ Eyes”.’
‘Oh, that’s the name of the song, is it?’ Alice said,
trying to feel interested.
‘No, you don’t understand,’ the Knight said, looking a
little vexed. ‘That’s what the name is called. The
name really is “The Aged Aged Man”.’

Lewis Carroll, Through the Looking Glass (1871)

We use language to represent the world. But language is also part of the world, and
it is one of the things that we talk about. We don’t just use words to talk about other
things; we can also use words to talk about words themselves.

We have been doing this a lot: as we have been building up little formal languages,
we have talked about them a lot, using ordinary English. But these little formal
languages can also talk about language. We can look at formal languages which
include names for sentences, and which include sentences that say things about
names, and so on. This means we can use these formal languages as a model of
what we ourselves have been doing all along, as logicians. We can turn the tools of
logic onto logic itself.

In fact, we have already been working with a theory with these capabilities since
early on. We represent terms and formulas of formal languages as strings of sym-
bols. These are all elements of the domain of 𝕊, the standard string structure. So
the string structure 𝕊 and the first-order language of strings are good tools for a
formalized theory of syntax. The language of strings is a formal language that can
describe formal languages.

Here are some important facts:

238 CHAPTER 6. THE INEXPRESSIBLE

6.6.1 Proposition
Let 𝐿 be a finite signature. The following sets are definable in 𝕊.

(a) The set of 𝐿-terms.
(b) The set of 𝐿-formulas.

Each of these sets has a recursive definition. So showing that they are definable is
tedious, but not difficult, using the same strategy for translating recursive definitions
into the language of strings that we discussed in Section 6.4 and Section 6.5. The
same goes for the following recursively defined syntactic operation.

6.6.2 Proposition
Let 𝐿 be a finite signature. The substitution function is the two-place function
that takes an 𝐿-formula 𝐴(𝑥) and a closed 𝐿-term 𝑏 to the 𝐿-sentence 𝐴(𝑏). The
substitution function is definable in 𝕊. That is to say, there is a definitional extension
of 𝕊 that includes a two-place function symbol sub such that

⟦sub(x,y)⟧𝕊(𝐴(𝑥), 𝑏) = 𝐴(𝑏)

for each 𝐿-formula 𝐴(𝑥) and 𝐿-term 𝑏. (Remember, formulas and terms are
strings—so 𝐴(𝑥), 𝑏, and 𝐴(𝑏) are each elements of the domain of the string
structure 𝕊.)

6.6.3 Exercise
Without going through all the details, explain why Proposition 6.6.2 is true. Con-
sider Example 6.4.5 as a model, and refer to the recursive definitions of substi-
tution for terms and formulas (Definition 3.5.4 and Definition 5.1.7).

In fact, Proposition 6.6.2 follows from an even more general fact about the expres-
sive power of the string language. It turns out that any operation on strings which
can be systematically worked out step by step is definable in 𝕊. (This is called the
Definability Theorem, Exercise 7.7.5.) Since the substitution function is systematic
in this way, the fact that it is definable in 𝕊 will follow as one particular application
of this general result.

As we have discussed, each string 𝑠 has a quotation label, a term in the language
of strings that denotes 𝑠, which we call ⟨𝑠⟩ (see Section 4.2 and Section 6.4). Since
formulas and terms are strings of symbols, they have canonical labels in the lan-
guage of strings. If 𝐴 is any 𝐿-formula, ⟨𝐴⟩ is a term in the language of strings that
denotes 𝐴 (in the string structure 𝕊). Similarly, if 𝑡 is an 𝐿-term, then ⟨𝑡⟩ is a term
in the language of strings that denotes the string representation for 𝑎.

6.6. REPRESENTING LANGUAGE 239

We can describe the syntax of any language 𝐿 that has finitely many primitive sym-
bols in the first-order theory of the string structure 𝕊. In particular, then, we can
apply all of these ideas to the language of strings itself. This language only has
finitely many primitives (⊕, ≲, "", and one constant for each symbol in the standard
alphabet 𝔸, which is finite). Thus the language of strings is a language that can
describe itself. The string language has terms that denote the very strings of sym-
bols that we use to write that language down. In the language of strings, for each
formula 𝐴, there is a quotation term ⟨𝐴⟩ that denotes 𝐴.

6.6.4 Example
Consider the formula x = x. The quotation term for this string, ⟨x=x⟩, is
"x" ⊕ "=" ⊕ "x" ⊕ ""

Or in officially spelled out notation:
⊕("x",⊕("=",⊕("x","")))

6.6.5 Notation
In what follows, when I’m talking about quotation labels, I’ll sometimes hide extra
brackets. Things like 𝐴(⟨𝑠⟩) look ugly, so I’ll instead write this as 𝐴⟨𝑠⟩. Similarly,
instead of 𝐴(⟨𝑠1⟩, ⟨𝑠2⟩) I’ll usually write the simplified version 𝐴⟨𝑠1⟩⟨𝑠2⟩.

6.6.6 Exercise
Use the definition of the quotation function ⟨⋅⟩ to explicitly write out each of the
following expressions.

(a) ⟨¬∀x x = 0⟩, which is the quotation of the formula ¬∀x x = 0 (in the
language of arithmetic).

(b) ⟨⟨()⟩⟩, which is the canonical label of the canonical label of the empty
string.

(c) 𝐴⟨𝐴(x)⟩, where 𝐴(x) is the formula x = x.

Since we began talking about strings, it’s been important for us to be careful about
the difference between use and mention: when we are using some symbols to say
something, and when we want to talk about those symbols themselves. We’ve used
notation like We've used notation like to mark this distinction. Now, though,
we need to be extra careful, because the formal language we are talking about—the
language of strings—can also talk about language. Within this “object language”
there is also a distinction between use and mention: between ways formulas and

240 CHAPTER 6. THE INEXPRESSIBLE

terms come up as part of the language, and ways formulas and terms come up as
part of what this language is understood as being about.

For example, for any formula 𝐴, this sentence is true in 𝕊:

⟨𝐴⟩ ⊕ "" = ⟨𝐴⟩

This says, intuitively, that joining the empty string to the formula 𝐴 gives you back
the same formula 𝐴. But this isn’t even a well-formed sentence:

𝐴 ⊕ "" = 𝐴

This sticks a formula 𝐴 in a spot where a term should be, and the result is gibberish.

For another example, let’s examine these first-order sentences.
∀x (x ⊕ "" = x)
∀x (x ⊕ ⟨()⟩ x)
∀x (x ⊕ ⟨ "" ⟩ = x)

The first sentence is true (in 𝕊): it says that appending the empty string to the end
of any string gives you the same thing back (a generalization of the fact above).
The second sentence is, in fact, the very same sentence as the first. Since ⟨()⟩, the
label for the empty string, is "", this notation just means to stick the string "" in the
middle of the string. The third sentence, in contrast, is false (in 𝕊). Intuitively, it
says that appending the quotation label for the empty string—the length-two string
""—to any string gives you the same thing back. If we unpack it, what the third
sentence says is
∀x(x ⊕ (quo ⊕ quo ⊕ "") = x)

This is false in 𝕊: for example, the string ABC"" is not the same as the string ABC.
This kind of issue can be subtle, and it’s important to get the hang of these distinc-
tions.

For any formula 𝐴, its label ⟨𝐴⟩ is some complex term. We can use this term ⟨𝐴⟩
just like any other term to build up other formulas, such as this one:

∃x (x ≲ ⟨𝐴⟩ & ¬(⟨𝐴⟩ ≲ x))

(“Some string is strictly shorter than the formula 𝐴”). We can also substitute ⟨𝐴⟩
into another formula 𝐵(x), just like any other term, to get a formula 𝐵⟨𝐴⟩. For
example, suppose 𝐵(x) is the formula x = x, and 𝐴 is the sentence 0 = 0. Then
the substitution instance 𝐵⟨𝐴⟩ is ⟨𝐴⟩ = ⟨𝐴⟩. Since ⟨𝐴⟩ is the term

6.6. REPRESENTING LANGUAGE 241

"0" ⊕ "=" ⊕ "0" ⊕ ""

the fully spelled out sentence 𝐵⟨𝐴⟩ is this monstrosity:
"0" ⊕ "=" ⊕ "0" ⊕ "" = "0" ⊕ "=" ⊕ "0" ⊕ ""

(As usual, to simplify the notation, I’m leaving out some redundant parentheses,
and using infix notation.)

We can even plug formulas into themselves. If 𝐴(x) is a formula of one variable,
we can substitute the quotation term ⟨𝐴(x)⟩ into the formula 𝐴(𝑥), to get the for-
mula 𝐴⟨𝐴(𝑥)⟩. Here’s how this would work in English, rather than our formal
language. Say 𝐴(x) is the English formula of one variable x is great, and ⟨𝐴(x)⟩
is its quotation-name "x is great". Then the substitution instance 𝐴⟨𝐴(x)⟩ is the
sentence
"x is great" is great

This is a sentence that says that a certain English formula is great.

This provides us with more examples of syntactic operations which are definable in
𝕊. In Exercise 6.3.4 we showed that the quotation function is definable in 𝕊: that is,
there is a definitional extension of 𝕊 that adds a one-place function symbol quote
such that

⟦quote⟧𝕊𝑠 = ⟨𝑠⟩
for every string 𝑠 ∈ 𝕊. Equivalently, for each string 𝑠, the following sentence is
true in 𝕊:

quote⟨𝑠⟩ = ⟨⟨𝑠⟩⟩
In particular, this holds when the string 𝑠 happens to be a formula.

6.6.7 Exercise
Let the self-application function (also called diagonalization) be the function
that takes any formula of one variable 𝐴(𝑥) to the sentence 𝐴⟨𝐴(𝑥)⟩, which
results from plugging the label for 𝐴(𝑥) into 𝐴(𝑥) itself. Show that the self-
application function is definable in 𝕊.

In other words, show that there is some formula 𝐹 (𝑥, 𝑦) in the language of strings
(or in a definitional extension) such that, for each formula 𝐴(𝑥), and any string
𝑠 ∈ 𝕊,

𝐹 (𝑥, 𝑦) is true of (𝐴(𝑥), 𝑠) in 𝕊 iff 𝑠 = 𝐴⟨𝐴(𝑥)⟩.
Hint. Use Proposition 6.6.2 and Exercise 6.3.4.

242 CHAPTER 6. THE INEXPRESSIBLE

We now have a systematic way, within the very simple language of strings, to de-
scribe syntax. This is a simple formalization of the thing we have been doing all
along through this text: using language to describe the structure of language itself.
Next we will explore some consequences.

6.7 Self-Reference and Paradox

Remember our old friend the Liar sentence, the sentence 𝐿 which says
L is not true. Is 𝐿 true? If 𝐿 is true, then since what 𝐿 says is that 𝐿 is
not true, it should follow that 𝐿 is not true. That’s a contradiction, so it must be
that 𝐿 is not true. But again, since what 𝐿 says is that 𝐿 is not true, and 𝐿 is not
true, it should follow that 𝐿 is true. That’s a contradiction. Moreover, we derived
that contradiction just using the following principles:

• There is a sentence 𝐿 = L is not true

• L is not true is true iff 𝐿 is not true.

The second principle is an instance of a more general schema. Here is another
famous instance:

• Snow is white is true iff snow is white.

On the left hand side we are mentioning a certain sentence. On the right hand side
we are using that very sentence to say something about snow, rather than saying
something about a sentence. In general, for any sentence 𝐴, if ⟨𝐴⟩ is a label for 𝐴,
then we can assemble a sentence with this form:

⟨𝐴⟩ is true iff 𝐴

The left hand side of the biconditional uses a label for a sentence, and the right
hand side uses that very sentence. Sentences like this are called instances of the T
Schema.

For a long time, many people assumed that the problem of the Liar Paradox
arose because there was something defective about “self-referential” sen-
tences like 𝐿. In English we can say things like this very sentence, or
what I am saying right now. The trick, many people thought, was to just
avoid saying things like this, at least whenever we were speaking “seriously”, like
in mathematics. In proper official languages, there just shouldn’t be any sentence
like 𝐿 = L is not true. Sentences shouldn’t be allowed to mention themselves.

6.7. SELF-REFERENCE AND PARADOX 243

But it turns out that this natural idea won’t work: in an important sense, self-
reference is inevitable. This follows fromGödel’s Fixed Point Theorem (which is
also known as the Diagonal Lemma). One caveat: what the theorem really shows
is not exactly that there is a sentence which mentions itself, but rather that there is
a sentence which is equivalent to one that mentions it. But this is plenty to raise
the interesting problems.

Let’s start with a warm-up. As we discussed back in Section 1.5, there is a paradox
called “Grelling’s Paradox” which is very similar to the Liar Paradox, but doesn’t
involve any self-reference. Instead of self-reference, we can use self-application.
Now we have some logical resources that will help us make this idea precise.

Let 𝐻(𝑥) be the English formula the self-application of x is not true.
And let 𝐺 be the self-application of 𝐻(𝑥), that is, 𝐻⟨𝐻(𝑥)⟩. Spelled out:
The self-application of "The self-application of x is not true"
is not true

Is 𝐺 true? If 𝐺 is true, then this seems to say that the self-application of 𝐻(𝑥) is
not true. But that’s what 𝐺 is! So if 𝐺 is true, then 𝐺 is not true. So 𝐺 must not be
true. But this seems to say that the self-application of 𝐻(𝑥) is true—and thus 𝐺 is
true after all. And so we have a contradiction.

Now we can use the first-order language of strings to formalize Grelling’s paradox.
As we discussed in the previous section, we can self-apply a formula of one vari-
able 𝐴(𝑥) to get a sentence 𝐴⟨𝐴(𝑥)⟩. This self-application function is standardly
called diagonalization. This syntactic operation is definable in the string structure
𝕊. That means we can definitionally extend the string structure 𝕊 to a new structure
𝑆+ which has a function symbol diag, such that, for any 𝐿𝕊(𝑥) formula 𝐴(𝑥)

⟦diag(𝑥)⟧𝑆(𝐴(𝑥)) = 𝐴⟨𝐴(𝑥)⟩

In what follows, let 𝕊(diag) be this definitionally expanded structure 𝑆.

Now, suppose that truth was definable in 𝕊. That would mean we could defini-
tionally extend 𝕊 with a truth predicate True, which would apply to just the true
sentences (in 𝕊). Using this predicate, we could then formalize the Grelling formula
x is not true of x like this:
¬True(diag(x))

Intuitively, this formula says, “The result of applying 𝑥 to itself is not true”. It
would be true of a string 𝑠 iff it is not the case that 𝑠 is a formula in the language of
strings whose self-application is true.

244 CHAPTER 6. THE INEXPRESSIBLE

This formula ¬True(diag(x)) is an expression in an expanded language, a defini-
tional extension of the language of strings, adding True and diag. But since these
were definable, we can eliminate them, and get back an extensionally equivalent
formula in the original language of strings. Let’s call this formula in the original
language 𝐻(x). Again, 𝐻(𝑥) is true (in 𝕊) of each string 𝑠 which is not a formula
with a true self-application.

Now, just like in Grelling’s paradox, we can ask again: what happens whenwe apply
this formula 𝐻(𝑥) to itself? Consider the “diagonalized” sentence 𝐻⟨𝐻(x)⟩—call
it 𝐺. Since 𝐻(x) has the same extension in 𝕊 as ¬True(diag(x)), it follows that
𝐺 has the same truth-value as

¬True(diag ⟨𝐻(𝑥)⟩)

But diag ⟨𝐻(x)⟩ denotes the sentence 𝐻⟨𝐻(x)⟩, which is just 𝐺 again! So (by
the Subsitution Lemma), this sentence is true (in the definitional extension of 𝕊)
iff the formula ¬True(x) is true of 𝐺. But we also just said that 𝐺 has the same
truth-value as this sentence. Thus:

𝐺 is true iff ¬True(x) is true of 𝐺
This self-application sentence 𝐺 is just as bad as the self-referential Liar sentence
𝐿. In fact, if True really does apply to just the true sentences, then our conclusion
is contradictory. So our original supposition must have been false: there must not
be any way of defining this new predicate True.

We just showed that the tricky sentence𝐺 is a “fixed point” of the formula ¬True(x).
Intuitively, we can think of ¬True(x) as denoting a function from strings to truth-
values. This function maps 𝐺 to the same truth-value as 𝐺 itself has. But most
of the reasoning we just went through—all of it except the very last step—didn’t
depend on anything special about truth. We can use the very same ideas to prove a
more general, quite beautiful theorem.

6.7.1 Exercise (Gödel’s Fixed Point Theorem, aka the Diagonal Lemma, Version 1)
Let 𝐹 (𝑥) be any formula in the language of strings.

(a) There is some first-order sentence 𝐺 in the language of strings with diag
added such that

𝐺 is true in 𝕊(diag) iff 𝐹 (𝑥) is true of 𝐺 in 𝕊(diag)

Hint. Work through the same reasoning as above, generalizing from the

6.8. DEFINITIONS IN A THEORY 245

specific formula ¬True(x) to an arbitrary formula 𝐹 (𝑥).
(b) The same goes for the unexpanded language of strings. That is, there is a

first-order sentence 𝐺 in the language of strings such that

𝐺 is true in 𝕊 iff 𝐹 (𝑥) is true of 𝐺 in 𝕊

Hint. Remember that any formula in the language of a definitionally ex-
panded structure can be translated back to an equivalent formula in the
original language—Proposition 6.1.15.

6.7.2 Exercise (Tarski’s Theorem Version 1)
Use Exercise 6.7.1 to show that the set of sentences which are true in the standard
string structure 𝕊 is not definable in 𝕊.

In short, truth is undefinable. The property of being a true sentence in the string
structure is not expressible by any first-order formula in the language of strings.

These are our first, prelimary versions of Gödel’s Fixed Point Theorem and Tarski’s
Theorem. Next we’ll generalize these ideas, and consider their implications.

6.8 Definitions in a Theory

Consider again our definition of even from Section 6.1:
∀x (Even(x) ↔ ∃y y + y = x)

When we define a new predicate like Even, this expands our language. We get a
new meaningful word. It also gives us a new truth—the definition statement. But
this statement isn’t just true—it’s also something we know. This definition is a new
principle that we can legitimately use in our proofs, just like axioms. We can assert
this sentence, with the justification of just “by definition.”

Now we’re going to formalize this aspect of our practice of introducing definitions.
The simple formal model of proving things that we have right now is just the notion
of logical consequence, and specifically the notion of a theory—the set of logical
consequences of some axioms. (In Chapter 8 we’ll introduce a finer-grained model
of proofs.)

6.8.1 Definition
Let 𝐿 be a signature, let 𝐴(𝑥) be any 𝐿(𝑥)-formula, and let 𝐹 be a new predicate,
not in 𝐿. A definition of 𝐹 by 𝐴(𝑥) is the following sentence:

246 CHAPTER 6. THE INEXPRESSIBLE

∀x (𝐹 (x) ↔ 𝐴(x))

We also had a similar definition of a definition of a function. For example, in Sec-
tion 6.1 we defined a function symbol pred:
∀x ∀y (pred x = y ↔ suc y = x ∨ (x = 0 & y = 0))

For this to work, we needed the relation described on the right-hand side of the
definition to be functional. That is, we required that this is true:
∀x ∃!y (suc y = x ∨ (x = 0 & y = 0))

But really, for the function definition to be justified, in the context of giving a proof,
it’s not enough that the functionality claim be true—itmust first be proven. It should
be a theorem.

6.8.2 Definition
Let 𝐿 be a signature, let 𝐴(𝑥, 𝑦) be any 𝐿(𝑥, 𝑦)-formula, and let 𝑓 be a new function
symbol not in 𝐿. Let 𝑇 be an 𝐿-theory, and suppose the “functionality sentence”

∀x ∃!y 𝐴(x , y)

is a theorem of 𝑇 . In this case, the following sentence is a definition of 𝑓 by 𝐴(𝑥, 𝑦)
in the context of the theory 𝑇 :

∀x ∀y(𝑓 (x) = y ↔ 𝐴(x , y))

Things go similarly for a definition of an 𝑛-place function symbol by a formula of
𝑛 + 1 variables.

6.8.3 Definition
If 𝑇 is an 𝐿-theory, we call a theory 𝑇 + a definitional extension of 𝑇 iff it consists
of the set of all logical consequences of 𝑇 ∪ 𝑋, where each sentence in 𝑋 is a
definition.

(These definitions must each be of distinct predicates or function symbols—
defining the same symbol twice is not allowed).

This notion of a definitional extension of a theory is closely related to our notion of
a definitional expansion of a structure.

6.8. DEFINITIONS IN A THEORY 247

6.8.4 Exercise
If 𝑇 + is a definitional extension of 𝑇 , then any model of 𝑇 has a definitional
expansion which is a model of 𝑇 +.

Hint. It’s enough to show that this is true when a single definition of a predicate
or function symbol is added. To do this, it will be useful to recall Exercise 6.1.14.

This lets us prove some important fact about definitions. In Section 6.1, we pointed
out that definitions don’t increase the expressive power of a language: if 𝑆+ is a
definitional extension of 𝑆, then any formula in the expanded language has the
same extension in 𝑆+ as some formula in the original language—its translation.
Something analogous holds for adding definitions to theories.

6.8.5 Exercise
Let 𝐿 be a signature, let 𝑇 be an 𝐿-theory, and let 𝑇 + be an 𝐿+-theory which
definitionally extends 𝑇 . For every 𝐿+-formula 𝐴, its translation 𝐴∗ (in the
original language 𝐿) is equivalent to 𝐴 in 𝑇 +. That is,

𝑇 + ⊨ 𝐴 ↔ 𝐴∗

Hint. Use Exercise 6.8.4 and Proposition 6.1.15.

There is also another way in which definitions are “tame”. Just as they don’t really
increase the expressive power of our language, they also don’t really increase our
power to prove things. In particular, if we can use our new definitions get a theorem
that we can state in our old language, then that sentence was already a theorem of
the original theory without those definitions.

6.8.6 Exercise
Let 𝐿 be a signature, and let 𝐿+ be an expansion of 𝐿. Let 𝑇 + be a definitional
extension of 𝑇 . Then for every 𝐿-sentence 𝐴 (in the smaller language), 𝐴 is a
theorem of 𝑇 + iff 𝐴 is a theorem of 𝑇 . In this case, we say that 𝑇 + conserva-
tively extends 𝑇 .

6.8.7 Exercise
If 𝑇 has an inconsistent definitional extension, then 𝑇 is inconsistent.

Before we move on, let’s introduce some shorthand for talking about logical equiv-
alence that will come in handy later.

248 CHAPTER 6. THE INEXPRESSIBLE

6.8.8 Definition
Let 𝑇 be a theory.

(a) Sentences 𝐴 and 𝐵 are equivalent in 𝑇 (abbreviated 𝐴 ≡
𝑇

𝐵) iff 𝐴 and 𝐵
have the same truth-value in every model of 𝑇 . Equivalently, 𝑇 ⊨ 𝐴 ↔ 𝐵.

(b) Terms 𝑎 and 𝑏 are equivalent in 𝑇 (abbreviated 𝑎 ≡
𝑇

𝑏) iff 𝑎 and 𝑏 denote the
same thing in every model of 𝑋. Equivalently, 𝑇 ⊨ 𝑎 = 𝑏.

So we can restate Exercise 6.8.5: if 𝑇 + is a definitional extension and 𝐴∗ is the
translation of 𝐴 back into the original language 𝐿, then

𝐴 ≡
𝑇 +

𝐴∗

Moreover, the fact that 𝑇 + conservatively extends 𝑇 implies that for any formulas
𝐴 and 𝐵 in the original language 𝐿,

If 𝐴 ≡
𝑇 +

𝐵 then 𝐴 ≡
𝑇

𝐵

6.8.9 Exercise
Let 𝑇 be an 𝐿-theory and let 𝐴, 𝐵, 𝐶 be 𝐿-sentences. If 𝐴 ≡

𝑇
𝐶 , and 𝐵 ≡

𝑇
𝐶 ,

then 𝐴 ≡
𝑇

𝐵.

6.8.10 Exercise
Let 𝐴(𝑥) be an 𝐿(𝑥)-formula, let 𝑎 and 𝑏 be 𝐿-terms, and let 𝑇 be an 𝐿-theory.

If 𝑎 ≡
𝑇

𝑏 then 𝐴(𝑎) ≡
𝑇

𝐴(𝑏)

Here’s one more important relationship between definitional expansions of struc-
tures and definitional extensions of theories.

6.8.11 Proposition
If 𝑆+ is a definitional expansion of 𝑆, then Th𝑆+ is a definitional extension of
Th𝑆.

Proof
Each new symbol in the language of 𝑆+ is definable in 𝑆. So each has a correspond-
ing definition. Let 𝑇 be the definitional extension of Th𝑆 using these definitions.
We can show that 𝑇 = Th𝑆+.

6.9. THEORIES OF SYNTAX 249

Let 𝐴 ∈ Th𝑆+; that is, 𝐴 is any sentence which is true in 𝑆+. Let 𝐴∗ be its trans-
lation back to the original language of 𝑆, using these definitions, as in Section 6.2.
Then we know that 𝐴∗ is true in 𝑆. In other words, 𝐴∗ ∈ Th𝑆, which is a subset of
its definitional extension 𝑇 . Finally, we know that 𝐴∗ is equivalent to 𝐴 in 𝑇 . So
since 𝐴∗ is in 𝑇 , 𝐴 must be in 𝑇 as well. In short, Th𝑆+ ⊆ 𝑇 .

For the other direction, note that if 𝐴 ∉ Th𝑆+, then ¬𝐴 ∈ Th𝑆+, and thus by the
same reasoning we just gave ¬𝐴 ∈ 𝑇 . Since 𝑇 is consistent (it is a conservative
extension of a theory that has a model), 𝐴 ∉ 𝑇 .

So Th𝑆+ = 𝑇 , which is a definitional extension of Th𝑆. □

6.9 Theories of Syntax

Definability in a structure effectively lets use use all of the truths in that structure to
pin down facts about particular sets and functions. Definability in a theory just lets
us use some of the facts—the axioms and their logical consequences. One reason
this is important is that picking out all of the truths in a structure can be very difficult
in practice, while picking out just a few useful truths is much easier.

Here’s an example. We’ve been focusing mainly on definability in the string struc-
ture 𝕊. As we’ll see in Section 7.7, there is a sense in which the true statements
in this structure are intractably complicated. But it turns out that we can still do
a lot with a lot less. We can consider some simple axioms that don’t pick out all
of the truths about sequences, but do pick out enough of them for many purposes.
For instance, there are still enough facts there to describe operations on numbers,
sequences, and syntax. Not only can the full structure 𝕊 define these operations, but
there is a much simpler theory of strings that can represent these operations. We
introduced this theory in Section 5.4: minimal theory of strings 𝖲 (Definition 5.4.3).
This is a finitely axiomatized theory that includes some important basic facts about
how strings are put together.

Consider a simple example. The set of all non-empty strings is definable in 𝕊, using
this formula:
x ≠ ""

This formula is true of each non-empty string, and false of the empty string. We
can also restate this using quotation terms. Since the quotation ⟨𝑠⟩ denotes 𝑠 in 𝕊,
it follows that for each non-empty string 𝑠, the sentence

250 CHAPTER 6. THE INEXPRESSIBLE

⟨𝑠⟩ ≠ ""

is true in 𝕊. Likewise, if 𝑠 is empty, then

⟨𝑠⟩ ≠ ""

is false in 𝕊.

But we don’t need all the truths about 𝕊 to get these simple facts. In fact, the fact
that ⟨𝑠⟩ ≠ "" is true if 𝑠 is non-empty, and false otherwise, follows from some very
basic facts about strings. Each of these things is in fact a theorem of the minimal
theory of strings 𝖲. For this example, we just need to recall that 𝖲 includes an axiom
of this form,
∀x ∀y (Sym(x) → x ⊕ y ≠ "")

where Sym(x) is an abbreviation for the long formula

x = "A" ∨ x = "B" ∨ ⋯

which lists out all of the constants for one-symbol strings. In particular, for each
symbol 𝑎 ∈ 𝔸, if 𝑐𝑎 is its corresponding constant, we have a theorem of 𝖲 of the
form

∀y (𝑐𝑎 ⊕ y ≠ "")

6.9.1 Example
Let 𝐴(x) be the formula x ≠ "". For each string 𝑠,

if 𝑠 is non-empty, 𝖲 ⊨ 𝐴⟨𝑠⟩
otherwise, 𝖲 ⊨ ¬𝐴⟨𝑠⟩

Proof
Let 𝑠 be any string. For the first part, suppose 𝑠 is non-empty. In that case, 𝑠 =
cons(𝑎, 𝑡) for some string 𝑡 and some symbol 𝑎 ∈ 𝔸 in the standard alphabet. So
⟨𝑠⟩ is the term 𝑐𝑎 ⊕ ⟨𝑡⟩, where 𝑐𝑎 is the constant for the symbol 𝑎. So 𝐴⟨𝑠⟩ is the
formula

𝑐 ⊕ ⟨𝑡⟩ ≠ ""

This immediately follows by universal instantiation from the theorem of 𝖲:

6.9. THEORIES OF SYNTAX 251

∀y (𝑐𝑎 ⊕ y ≠ "")

For the second part, suppose 𝑠 is empty. In this case the label ⟨𝑠⟩ is the term "". So
¬𝐴⟨𝑠⟩ is the formula ¬("" ≠ ""), which is a logical truth—and thus of course it is
a logical consequence of 𝖲. □

The formula x ≠ "" applies to the right things to define the set of non-empty
strings—and this fact is something that the minimal theory of strings 𝖲 “knows”,
using quotation terms. Let’s generalize this idea.

6.9.2 Definition
Let 𝑇 be a theory, either in the language of strings, or in some expansion of that
language.

(a) Let 𝑋 be a set of strings, and let 𝐴(𝑥) be a formula of one variable. Then 𝑇
represents 𝑋 iff there is some formula 𝐴(𝑥) such that, for each string 𝑠 ∈ 𝕊,

If 𝑠 ∈ 𝑋 then 𝑇 ⊨ 𝐴⟨𝑠⟩
If 𝑠 ∉ 𝑋 then 𝑇 ⊨ ¬𝐴⟨𝑠⟩

(b) Let 𝑓 be a partial function from strings to strings. (That is, 𝑓 ∶ 𝑋 → 𝕊 for
some set of strings 𝑋 ⊆ 𝕊.) Then 𝑇 represents 𝑓 iff 𝑇 has some definitional
extension 𝑇 + with a new function symbol 𝑔 such that, for each string 𝑠 ∈ 𝑋
in the domain of 𝑓 ,

𝑇 + ⊨ 𝑔⟨𝑠⟩ = ⟨𝑓(𝑠)⟩
Or in other words,

𝑔⟨𝑠⟩ ≡
𝑇 +

⟨𝑓(𝑠)⟩

To put that another way, if 𝑓 is definable, then this means that there is some
formula 𝐴(𝑥, 𝑦) such that

𝑇 ⊨ ∀x ∃!y 𝐴(x, y)

and, for each string 𝑠 ∈ 𝑋,

𝑇 ⊨ 𝐴⟨𝑠⟩⟨𝑓(𝑠)⟩

Things go similarly for sets of 𝑛-tuples and 𝑛-place functions.

252 CHAPTER 6. THE INEXPRESSIBLE

6.9.3 Exercise
(a) If 𝑋 is any set of strings, then 𝑋 is definable in 𝕊 iff Th𝕊 represents 𝑋.

(b) If 𝑓 is any function from strings to strings, then 𝑓 is definable in 𝕊 iff Th𝕊
represents 𝑋.

6.9.4 Example
Consider the function that appends a stroke to the beginning of a string:

delimit 𝑥 = | ⊕ 𝑥

This function is representable in the minimal theory of strings 𝖲. We can extend 𝖲
with a function symbol delimit with this definition:
∀x ∀y (delimit x = y ↔ "|" ⊕ x = y)

Equivalently, and more succinctly:
∀x (delimit x = "|" ⊕ x)

To justify this, we have to check that 𝖲 includes the existence and uniqueness claim:
∀x ∃!y ("|" ⊕ x = y)

In fact, this is a logical truth.

Now what we need to show is, for any string 𝑠, we have this as a theorem of 𝖲:
"|" ⊕ ⟨𝑠⟩ = ⟨ | ⊕ 𝑠⟩

In fact, the right-hand side ⟨| ⊕ 𝑠⟩ is defined to be "|" ⊕ ⟨𝑠⟩ (because "|" is the
constant for the symbol |). So in fact this identity sentence is a logical truth of the
form (𝑎 = 𝑎). So of course it is a logical consequence of the axioms of 𝖲.

6.9.5 Exercise
Let 𝑋 and 𝑌 be sets of strings, and suppose that 𝑇 is a theory that represents
each of 𝑋 and 𝑌 . Then 𝑇 also represents the following sets:

(a) The union 𝑋 ∪ 𝑌 .

(b) The intersection 𝑋 ∩ 𝑌 .

(c) The difference 𝑋 − 𝑌 .

6.9. THEORIES OF SYNTAX 253

6.9.6 Exercise
Suppose a theory 𝑇 ′ extends 𝑇 : that is, the set of theorems of 𝑇 is a subset of
the set of theorems of 𝑇 ′. If 𝑇 represents 𝑋, then 𝑇 ′ represents 𝑋.

In Section 6.6, we discussed the fact that some important syntactic operations are
definable in the standard string structure 𝕊. The string structure can describe how
to substitute terms into formulas, as well as the function that takes each string to its
quotation label. As it turns out, theminimal theory of strings 𝖲 can do this, too. This
theory includes enough information to represent these basic syntactic operations.

The reason this is true is that, as it turns out, the minimal theory of strings includes
every truth-in-𝕊 which is syntactically simple enough. Section 6.10 explains what
this means in more detail, and walks through the details of how to prove it. The
important upshot is that any set or function that is definable in 𝕊 using a simple
enough expression can also be represented in the minimal theory of strings 𝖲. (The
officially stated version of this fact is Exercise 6.10.16.) And in fact, if we work
through the definitions of substitution and the label function, it is possible to do it
in a way that only uses these simple-enough formulas. The minimal theory also
includes enough formulas to define lots of other interesting operations, as we will
discuss in Section 7.7.

For the moment, we will take the following facts on faith:

(a) The substitution function, which takes a formula 𝐴(𝑥) and a term 𝑏 to the
sentence 𝐴(𝑏), is representable in 𝖲.

(b) The quotation function, which takes a formula 𝐴 to its quotation term ⟨𝐴⟩, is
representable in 𝖲.

Then this follows:

(c) The self-application function (or diagonalization), which takes a formula
𝐴(𝑥) to the sentence 𝐴⟨𝐴(𝑥)⟩, is representable in 𝖲.

It will be helpful later on to have concise way of referring to this important property
of 𝖲. Let’s restate it:

6.9.7 Definition
Let 𝑇 be a theory in the language of strings (or an expansion of that language).
We will say that 𝑇 represents syntax iff it represents the self-application function
𝐴(𝑥) ↦ 𝐴⟨𝐴(𝑥)⟩. In other words, 𝑇 has a definitional extension 𝑇 + with a function

254 CHAPTER 6. THE INEXPRESSIBLE

symbol diag such that, for any 𝐿-formula 𝐴(𝑥),
diag⟨𝐴(𝑥)⟩ ≡

𝑇 +
⟨𝐴⟨𝐴(𝑥)⟩⟩

So this is another way of stating the main fact that we are taking on faith, for now:

6.9.8 Theorem
The minimal theory of strings 𝖲 represents syntax.

We haven’t proved this yet, though in principle there’s nothing stopping us. It’s a
matter of writing out the complicated formula 𝐹 (𝑥, 𝑦) that defines self-application,
and checking that 𝖲 has two kinds of theorem. First, we need the “functionality”
claim

∀x ∃!y 𝐹 (x , y)

Second, for each formula 𝐴(𝑥), we need the theorem

𝐹 ⟨𝐴(𝑥)⟩⟨𝐴⟨𝐴(𝑥)⟩⟩
This ensures that 𝐹 really applies to each pair of a formula and its diagonalization.
But rather than working through all of this now, we’ll wait until we prove the more
general Representability Theorem in Section 6.9.

Now we can prove some powerful generalizations of the theorems from Section 6.7.
If 𝑇 represents syntax, then let’s go to a definitional extension 𝑇 + with a function
symbol diag, such that

diag⟨𝐴(𝑥)⟩ ≡
𝑇 +

⟨𝐴⟨𝐴(𝑥)⟩⟩

We can use diagonalization to come up with a “self-referential” sentence, basically
the same way as before.

6.9.9 Exercise (Gödel’s Fixed Point Theorem Version 2)
Suppose that 𝑇 is a theory that represents syntax. Let 𝐹 (𝑥) be any formula. Then
there is some first-order sentence 𝐺 such that

𝐺 ≡
𝑇

𝐹 ⟨𝐺⟩

Hint. Use the same strategy as in Exercise 6.7.1. You’ll need to use Exer-
cise 6.8.5 and Exercise 6.8.6 to get back from the extended language 𝑇 +, which

6.9. THEORIES OF SYNTAX 255

includes the diag function symbol, to the original language.

6.9.10 Exercise (Tarski’s Theorem Version 2: The Liar Paradox)
Suppose 𝑇 represents syntax. Let True(𝑥) be a formula, and suppose that for
each sentence 𝐴,

𝑇 ⊨ True⟨𝐴⟩ ↔ 𝐴
Then 𝑇 is inconsistent.

Hint. Use Exercise 6.9.9 with the same idea from the Liar Paradox as in the
proof of Exercise 6.7.2.

6.9.11 Exercise (Tarski’s Theorem Version 3)
Suppose 𝑇 represents syntax, and suppose furthermore that 𝑇 represents the set
of all theorems of 𝑇 . Then 𝑇 is inconsistent.

Hint. Use the Fixed Point Theorem and the Liar Paradox idea again.

Notice that our earlier version of Tarski’s Theorem, the undefinability of truth-in-
the-string-structure (Exercise 6.7.2), follows from this generalized version. We can
let 𝑇 be Th𝕊, the set of all sentences which are true in 𝕊. This theory is consistent:
it has 𝕊 as a model. It also represents syntax. So Th𝕊 must not be representable in
Th𝕊, which means that Th𝕊—which is the set of all truths in 𝕊—is not definable
in the string structure 𝕊.

Before we move on, here’s one more “bonus” version of the Fixed Point Theorem.
It allows you to more directly formalize statements like

L = L is not true

in the language of strings. So we can get sentences that are really self-referential,
instead of just equivalent to a sentence about it. The cost is that the sentencemay not
be in the same language as the original theory, but rather in a definitional extension
of it.

6.9.12 Exercise (Gödel’s Fixed Point Theorem Version 3)
Suppose that 𝑇 is a theory that represents syntax. Let 𝐹 (𝑥) be any formula. Then
𝑇 has a definitional extension 𝑇 + that includes a term 𝑎 such that

𝑇 + ⊨ 𝑎 = ⟨𝐹 (𝑎)⟩

Hint. You can use the same formula 𝐻(𝑥) as before. This time, though, you

256 CHAPTER 6. THE INEXPRESSIBLE

want to use a term that represents the result of “diagonalizing” 𝐻(𝑥), instead of
a sentence.

Notice that Version 3 of the Fixed Point Theorem implies Version 2, as well. If you
have a term 𝑎 which is equivalent to ⟨𝐹 (𝑎)⟩ in 𝑇 , then 𝐹 (𝑎) is equivalent to 𝐹 ⟨𝐹 (𝑎)⟩
in 𝑇 . But the converse doesn’t hold: the sentence version does not imply the term
version. Youmight think that if 𝐺 is a fixed-point sentence, then ⟨𝐺⟩ is a fixed-point
term. But that doesn’t follow. Just because 𝐺 is equivalent to 𝐹 ⟨𝐺⟩ in 𝑇—that is,
𝐺 ↔ 𝐹 ⟨𝐺⟩ is a theorem of 𝑇—that doesn’t mean that the identity ⟨𝐺⟩ = ⟨𝐹 ⟨𝐺⟩⟩
is a theorem of 𝑇 . Different sentences can be logically equivalent to each other.
So the term version of the Fixed Point Theorem is going a bit beyond the sentence
version. In the original language, without the defined function symbol diag, you
might not have a fixed point term, even if you do have a fixed point sentence.

TODO. Add some philosophical discussion about the relationship to the definition
of truth in Section 5.2.

6.10 Representability in the Minimal Theory of Strings 𝖲*
The full theory of strings (Th𝕊) is very complicated, and the minimal theory of
strings (𝖲) is relatively simple—it has just finitely many axioms. (In Chapter 7 and
Chapter 8 wewill be able to saymore about the ways in which the minimal theory of
strings is “simpler.”) Even so, it turns out that the minimal theory of strings can do
a whole lot of what the full-fledged theory of strings can. It is expressively pretty
powerful. So lots of interesting things that can be defined in the standard string
structure can also be represented in the minimal theory of strings. This includes
the syntactic operations that Gödel’s Fixed Point Theorem relies on—but that’s just
one example. In this section we will examine how this works in general.

There are lots of truths about strings which are not theorems of the minimal the-
ory of strings 𝖲. But as it turns out, the minimal theory of strings includes all of
the truths about strings which are syntactically simple enough, in a sense that we
will make precise. For example, 𝖲 includes every truth about strings that can be
expressed in a sentence (in the language of strings) without any quantifiers.

If a set of strings 𝑋 is definable in the string structure 𝕊, this means that there is a
certain formula 𝐴(𝑥) which is true of each string which is in 𝑋, and false of each
string which is not in 𝑋. Equivalently, 𝐴⟨𝑠⟩ is true in 𝕊 for each string 𝑠 ∈ 𝑋,
and ¬𝐴⟨𝑠⟩ is true in 𝕊 for each string 𝑠 ∉ 𝑋. This means that if the formula 𝐴(𝑥)
is syntactically simple enough, then these sentences are each theorems of the mini-
mal theory of strings, as well. So this tells us that any set which is definable in the

6.10. REPRESENTABILITY IN THE MINIMAL THEORY OF STRINGS 𝖲* 257

standard string structure using a syntactically simple enough formula is also repre-
sentable in the minimal theory of strings. Something similar goes for representing
functions, as well.

For now, the most important application of these facts is about representing syntax.
The syntactic operations of substitution and labeling are definable in the standard
string structure. But if we pay attention to how we do it, we can show that they are
definable using syntactically simple formulas. (To use the technical term we will
define later in this section, they are Σ1-definable.) This tells us the main fact we
took on faith in Section 6.9: the minimal theory of strings represents syntax. In
Section 7.7 there will be another very important application, which generalizes this.
It turns out that any operation on strings that can be systematically computed step
by step is representable in the minimal theory of strings.

How can we show that 𝖲 includes all the “syntactically simple enough” truths about
strings? Let’s start small. We’ll start by showing that the minimal theory 𝖲 knows
enough to “unpack” each closed term in the language of strings. Remember that
a term in this language is either "", a constant for some single symbol 𝑎, or else
a term 𝑡1 ⊕ 𝑡2 for some terms 𝑡1 and 𝑡2. Remember also that each string 𝑠 has a
quotation ⟨𝑠⟩. For example, the quotation of ABC is the term
"A" ⊕ ("B" ⊕ ("C" ⊕ ""))

We can repeatedly apply the axioms of 𝖲 to convert an arbitrary term to its quotation
term. In particular, 𝖲 has these axioms for joining strings:
"" ⊕ x = x
x ⊕ "" = x
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

We can apply these axioms to “normalize” the term ("A" ⊕ "") ⊕ "B". Using the
last of these axioms, instantiating 𝑥 with "A", 𝑦 with "" and 𝑧 with "B"):
("A" ⊕ "") ⊕ "B" = "A" ⊕ ("" ⊕ "B")

Then, since "" ⊕ "B" = "B" and "B" ⊕ "" follow from the first and second ax-
ioms, by Leibniz’s Law we have this as a theorem of 𝖲:
("A" ⊕ "") ⊕ "B" = "A" ⊕ ("B" ⊕ "")

The right-hand term is the canonical label for the string ⟨ABC⟩, which is the string
denoted by the left-hand term.

258 CHAPTER 6. THE INEXPRESSIBLE

6.10.1 Exercise
(a) Let 𝑠1 and 𝑠2 be strings. Show by induction on the length of 𝑠1 that

⟨𝑠1⟩ ⊕ ⟨𝑠2⟩ = ⟨𝑠1 ⊕ 𝑠2⟩

is a theorem of 𝖲.
(b) Let 𝑡 be any term in the language of strings, and let 𝑠 = ⟦𝑡⟧𝕊 be the

denotation of 𝑡 in 𝕊. Show by induction on the structure of the term 𝑡
that

𝑡 = ⟨𝑠⟩

is a theorem of 𝖲.
(c) Let 𝑡1 and 𝑡2 be any terms in the language of strings. If

𝑡1 = 𝑡2

is true in 𝕊, then it is a theorem of 𝖲.

We can also show similar things about distinctness. We have these axioms of 𝖲
(which correspond to the Injective Property for strings).
Sym(x) → x ⊕ y ≠ ""
Sym(x₁) → Sym(x₂) → x₁ ⊕ y₁ = x₂ ⊕ y₂ → (x₁ = x₂ & y₁ = y₂)

And for each pair of distinct symbols 𝑎1 ≠ 𝑎2 ∈ 𝔸, we have an axiom for their
corresponding constants 𝑐1 and 𝑐2:

𝑐1 ≠ 𝑐2

We can use these axioms to show the following. It follows that 𝖲 has these theorems,
for any distinct single-symbol constants 𝑐1 and 𝑐2:

𝑐1 ⊕ x ≠ ""
𝑐1 ⊕ x ≠ 𝑐2 ⊕ y

6.10.2 Exercise
(a) Show by induction that for any string 𝑠1, if 𝑠2 is a distinct string from 𝑠1,

then

6.10. REPRESENTABILITY IN THE MINIMAL THEORY OF STRINGS 𝖲* 259

⟨𝑠1⟩ ≠ ⟨𝑠2⟩

is a theorem of 𝖲.
(b) Let 𝑡1 and 𝑡2 be any terms in the language of strings. If

𝑡1 ≠ 𝑡2

is true in 𝕊, then it is a theorem of 𝖲.

We can do similar things with our other basic kind of formulas. The theory 𝖲 also
has some axioms that say how the “no-longer-than” relation should work:
"" ≲ x
x ≲ "" ↔ x = ""
Sym(x₁) → Sym(x₂) → x₁ ⊕ y₁ ≲ x₂ ⊕ y₂ ↔ y₁ ≲ y₂

6.10.3 Exercise
Show by induction that for any strings 𝑠1 and 𝑠2:

(a) If 𝑠1 is no longer than 𝑠2, then

⟨𝑠1⟩ ≲ ⟨𝑠2⟩

is a theorem of 𝖲.
(b) If 𝑠1 is longer than 𝑠2, then

¬(⟨𝑠1⟩ ≲ ⟨𝑠2⟩)

is a theorem of 𝖲.
(c) Let 𝑡1 and 𝑡2 be terms in the language of strings. If the sentence

𝑡1 ≲ 𝑡2

is true in 𝕊, then it is a theorem of 𝖲. If it is false in 𝕊, then

¬(𝑡1 ≲ 𝑡2)

is a theorem of 𝖲.

This shows that the minimal theory 𝖲 “knows” the truth-value of every basic sen-
tence in the language of strings, which is either an identity sentence or a “no-longer-
than” sentence. Next we can extend this to slightly more complex sentences, which

260 CHAPTER 6. THE INEXPRESSIBLE

also use the propositional connectives ¬ and &.

6.10.4 Exercise
Let 𝐴 be any quantifier-free sentence in the language of strings: that is, 𝐴 is
built up using just identity sentences, relational sentences (using ≲), negation,
and conjunction. If 𝐴 is true in 𝕊, then 𝖲 ⊧ 𝐴, and if 𝐴 is false in 𝕊, then
𝖲 ⊨ ¬𝐴.

Hint. Use induction on formulas.

This means 𝖲 knows the truth-value of every sentence in the first-order language of
strings that doesn’t use any quantifiers. But we’ll needmore than this—the formulas
we used to define computable functions use quantifiers, too. It would be natural
to try adding the quantifiers back in as well—but in fact, this won’t work. There
are some sentences using quantifiers that are true in 𝕊, but are not theorems of 𝖲.
(We won’t prove this now, but it will turn out to be a consequence of Gödel’s First
Incompleteness Theorem, Exercise 8.5.6.)

But not all sentences using quantifiers are out of reach. For example, consider this
sentence:
∀x (x ≲ "••" → (x ≲ "A" ∨ "BB" ≲ x))

This uses a universal quantifier. But the quantifier is restricted to just the strings of
length at most two. So, effectively, instead of quantifying over the infinite domain
of all strings, this sentence only “cares about” those finitely many strings which are
no longer than ••. It turns out that the minimal theory 𝖲 can handle sentences like
this just fine. The trick is that, since there are only finitely many different strings of
length at most two, we can list them all out (though it’s a long finite list, because
our alphabet is large):

𝑠1, 𝑠2, …, 𝑠𝑛

Then, if we abbreviate the right-hand side x ≲ "A" ∨ "BB" ≲ x as 𝐴(x), we can
rewrite the quantified sentence as a long conjunction, like this:

𝐴⟨𝑠1⟩ & 𝐴⟨𝑠2⟩ & … & 𝐴⟨𝑠𝑛⟩

The quantified sentence is true in 𝕊 if and only if this long conjunction is true in
𝕊. Furthermore, we can show that 𝖲 “knows” this equivalence. And since the
conjunction doesn’t have any quantifiers, we have already shown that 𝖲 knows its
truth-value, too. Thus this particular quantified sentence is also a theorem of 𝖲.
In general, we can use this idea to show that any sentence that uses only bounded
quantifiers is still within the ken of the minimal theory 𝖲.

6.10. REPRESENTABILITY IN THE MINIMAL THEORY OF STRINGS 𝖲* 261

6.10.5 Definition
Let 𝑡 be a term, let 𝐴 be a formula, and let 𝑥 be a variable. Let

∀𝑥 ≲ 𝑡 𝐴

abbreviate the bounded universal generalization

∀𝑥 (𝑥 ≲ 𝑡) → 𝐴

Similarly,
∃𝑥 ≲ 𝑡 𝐴

abbreviates the bounded existential generalization

∃𝑥 𝑥 ≲ 𝑡 & 𝐴

Call a formula in the language in the language of strings (without definite descrip-
tions) bounded iff it is built up just using identity formulas, length formulas, con-
junction, negation, and bounded universal quantification.2

Here is the final axiom of the minimal theory 𝖲.
x = "" ∨ ∃y ∃z (Sym(y) & x = y ⊕ z)

We can use this, along with things we have already shown about what 𝖲 knows
about the no-longer-than relation, to show the following.

6.10.6 Exercise
(a) Let 𝑠 be any string, and let 𝑠1, …, 𝑠𝑛 be all of the strings which are no

longer than 𝑠. Prove by induction on 𝑠 that

∀x (x ≲ ⟨𝑠⟩ ↔ (x = ⟨𝑠1⟩ ∨ ⋯ ∨ x = ⟨𝑠𝑛⟩))

is a theorem of 𝖲.
(b) Let 𝑡 be a term, and let 𝐴(𝑥) be a quantifier-free formula of one variable

𝑥. There is a quantifier-free formula 𝐵 such that

𝐵 ↔ ∀(x ≲ 𝑡) 𝐴(𝑥)

is a theorem of 𝖲.

2Other standard names for bounded formulas include Δ0-formulas, Σ0-formulas, and Π0-formulas.

262 CHAPTER 6. THE INEXPRESSIBLE

6.10.7 Exercise
Let 𝐴 be any bounded sentence. If 𝐴 is true in 𝕊, then 𝖲 ⊨ 𝐴, and if 𝐴 is false
in 𝕊, then 𝖲 ⊨ ¬𝐴.

Finally, we can go one step further, by adding some unbounded quantifiers. But
this time we can’t do quite as much. We can only add existential quantifiers, we can
only do it once, and we only get half as strong a conclusion. So far, we have shown
that 𝖲 knows the truth-value of every bounded sentence. But for the final step, we
will only get one direction: for each of these slightly more complicated sentences,
if it is true, then 𝖲 knows it is true—but if it is false, then 𝖲 might not know it.
(That’s why we can’t use this result to keep building up to even more complicated
sentences. We have reached a limit.)

6.10.8 Exercise
Suppose 𝐴(𝑥) is a bounded formula. If

∃ 𝑥 𝐴(𝑥)

is true in 𝕊, then it is a theorem of 𝖲.

It’s helpful to have a word for formulas which are slightly more complicated than
bounded formulas in this way.

6.10.9 Definition
A formula is Σ1 (pronounced “sigma-one”) iff it has the form ∃𝑥 𝐴, for some
bounded formula 𝐴. That is, a Σ1 formula is a bounded formula with an unrestricted
existential quantifier in front.3

So in other words, what Exercise 6.10.8 tells us is that, if 𝐴 is Σ1, and 𝐴 is true in
𝕊, then 𝐴 is a theorem of 𝖲. But, to reiterate, in general if 𝐴 is false in 𝕊, we don’t
know that ¬𝐴 is a theorem of 𝖲.

3The Greek letter capital sigma is often used to represent existential quantification, and the sub-
script one indicates that we have just used existential quantification once.

The Greek letter capital pi Π is often used to represent universal quantification. So similarly, a
Π1-formula is a bounded formula with an unbounded universal quantifier in front.

This is just the beginning of a hierarchy of more and more complex formulas. A Σ2-formula is
what you get by adding an existential quantifier to a Π1 formula. A Π2-formula is what you get by
adding a universal quantifier to a Σ1-formula. And you can go on this way to recursively define Σ𝑛
and Π𝑛 formulas for every number 𝑛. Every formula is equivalent (in 𝖲) to something that shows up
at some stage in this hierarchy. This gives us a useful general notion of a formula’s “quantificational
complexity”.

6.10. REPRESENTABILITY IN THE MINIMAL THEORY OF STRINGS 𝖲* 263

Intuitively, if there is an example of something that satisfies a bounded formula
𝐵(𝑥), then eventually 𝖲 can find it, by plugging away through the structure of indi-
vidual strings. But if there is no example of something that satisfies 𝐵(𝑥), then no
matter how long you plug away finding consequences of 𝖲, you may never succeed
in “proving the negative”.4

6.10.10 Exercise
Say a formula is Σ1-equivalent iff it has the same extension in 𝕊 as some Σ1-
formula. If 𝐴 and 𝐵 are Σ1 formulas, and 𝑡 is a term, then the following are
Σ1-equivalent formulas.

(a) 𝐴 ∨ 𝐵
(b) 𝐴 & 𝐵
(c) ∃𝑥 𝐴
(d) ∀𝑥 ≲ 𝑡 𝐴

6.10.11 Exercise
(a) Let 𝑋 be a set of strings which is definable in 𝕊 using a bounded formula.

That is, there is a bounded formula 𝐴(𝑥) which is true of each string in
𝑋, and false of each string not in 𝑋 (in the structure 𝕊). Then 𝐴(𝑥) also
represents 𝑋 in 𝖲.

(b) Let 𝑋 be a set of strings which is definable in 𝕊 using a Σ1-formula 𝐴(𝑥).
Then 𝐴(𝑥) also represents 𝑋 in 𝖲 “in one direction”. That is, for each
string 𝑠 ∈ 𝑋, 𝐴⟨𝑠⟩ is a theorem of 𝖲, and for each string 𝑠 ∉ 𝑋, 𝐴⟨𝑠⟩ is
not a theorem of 𝖲.

(Similar facts hold for sets of 𝑛-tuples and formulas of 𝑛 variables, but there is
no need to show this separately.)

We’ll also need to show some related things about representable functions, rather
than sets.

6.10.12 Definition
Let 𝑓 be a partial function from strings to strings. Say that 𝑓 is Σ1-definable iff
there is a Σ1 formula 𝐴(𝑥, 𝑦) such that, for each string 𝑠 in the domain of 𝑓 , 𝑓(𝑠) is
the unique string such that 𝐴(𝑥, 𝑦) is true of (𝑠, 𝑓 (𝑠)) in 𝕊.

4In Section 7.6 we will discuss a very closely analogous distinction, between decidable sets and
semi-decidable sets. In a sense, the bounded sentences are “decidable in 𝖲”, while the Σ1 sentences
are only “semi-decidable in 𝖲”. (But this is an alternative sense of “decidable” and “semi-decidable”
that has to do with logical consequences, rather than programs.)

264 CHAPTER 6. THE INEXPRESSIBLE

The next bit involves a bit of tricky logic engineering. Let 𝑓 ∶ 𝕊 → 𝕊 be a function,
and suppose there is a “functional” Σ1-formula 𝐴(𝑥, 𝑦) as in the definition: so for
each string 𝑠, 𝑓(𝑠) is the unique string such that 𝐴(𝑥, 𝑦) is true of (𝑠, 𝑓 (𝑠)). We
want to show that 𝖲 represents 𝑓 . The trouble is that we aren’t guaranteed to be
able to use the formula 𝐴(𝑥, 𝑦) as a definition in the context of 𝖲. To do this, it isn’t
enough that the formula 𝐴(𝑥, 𝑦) is functional—the theory 𝖲 needs to “know” that it
is functional, by including this theorem:

∀x ∃!y 𝐴(x, 𝑦)

The problem is that this “functionality” sentence is not Σ1—it involves two unre-
stricted universal quantifiers. So even if it is true in 𝕊, there is no guarantee that it
is a theorem of the minimal theory.

But there is a way to avoid this. The basic idea is that we can use a different for-
mula as our definition—call it 𝐵(𝑥, 𝑦). This formula 𝐵(𝑥, 𝑦) will be extensionally
equivalent to 𝐴(𝑥, 𝑦), but it will be written in a form that makes it more obvious
that it has to be functional. It doesn’t have to be Σ1: instead, we can choose 𝐵(𝑥, 𝑦)
so that for every string 𝑠, we have

𝖲 ⊨ 𝐴⟨𝑠⟩⟨𝑓(𝑠)⟩ → 𝐵⟨𝑠⟩⟨𝑓(𝑠)⟩

So if 𝐴(𝑥, 𝑦) is Σ1, that will be enough to get us all of the theorems we need: we
can use 𝐵(𝑥, 𝑦) as our definition for 𝑓 , and we will be able to prove each of the
identities 𝑓⟨𝑠⟩ = ⟨𝑓(𝑠)⟩ that we need.

Here is how to modify our formula. First we’ll handle uniqueness, and then exis-
tence. The basic idea for uniqueness is that if 𝑡 is the only string such that (𝑠, 𝑡)
satisfies 𝐴(𝑥, 𝑦), then 𝑡 is also the shortest string such that (𝑠, 𝑡) satisfies 𝐴(𝑥, 𝑦).
Moreover, the axioms of 𝖲 are enough to guarantee that there can be at most one
shortest string with a certain property.

To show this, we’ll need to use the last axiom of 𝖲:
x ≲ y ∨ y ≲ x

6.10.13 Exercise
Let 𝐴(x) be a formula, and let 𝐵(x) be the formula

∀(x' ≲ x)(𝐴(x') ↔ x = x')

Show that

6.10. REPRESENTABILITY IN THE MINIMAL THEORY OF STRINGS 𝖲* 265

∀x ∀y ((𝐵(x) & 𝐵(y)) → x = y)

is a theorem of 𝖲.
For the existence part, we can add on an extra “default” output value, which is the
output in a case where otherwise there wouldn’t be any output.

6.10.14 Exercise
Let 𝐴(x) be a formula, and let 𝐵(x) be the formula

𝐴(x) ∨ (¬∃x 𝐴(x) & x = "Nothing")

Show that
𝖲 ⊨ ∃x 𝐵(x)

(In fact, this is a logical truth.)

Now we can put these two ideas together.

6.10.15 Exercise
Let 𝐴(x, y) be a formula of two variables. Let 𝐵(𝑥, 𝑦) be the formula

∀(y' ≲ y)(𝐴(x , y') ↔ y = y')
∨ (¬∃y' 𝐴(x , y') & y' = "Nothing")

Show:
(a)

𝖲 ⊨ ∀x ∃!y 𝐵(x, y)

(b) If 𝐴(𝑥, 𝑦) is Σ1, then for any strings 𝑠 and 𝑡,

𝖲 ⊨ 𝐴⟨𝑠⟩⟨𝑡⟩ → 𝐵⟨𝑠⟩⟨𝑡⟩

Now we can finally show what we wanted to show.

6.10.16 Exercise
If 𝑓 is Σ1-definable, then 𝑓 is representable in 𝖲.

Here’s the key application of all of this. The substitution function is not just de-
finable in the string structure 𝕊: in fact, it is Σ1-definable. The same goes for the
labeling function. Thus by Exercise 6.10.16, these two functions are representable

266 CHAPTER 6. THE INEXPRESSIBLE

in the minimal theory of strings 𝖲. So the diagonalization function is also repre-
sentable in 𝖲. That is, 𝖲 represents syntax.

There will be a second important application in Section 7.7, which is much more
general.

6.11 Syntax and Arithmetic

We have one central example of a theory that represents syntax: the minimal theory
of strings 𝖲 (though, again, we have deferred the proof of this until Chapter 7). But
there are many other theories that will do the same job.

Recall what it means for a theory 𝑇 to represent syntax: what we need is a defini-
tional extension that includes a function symbol diag that represents the diagonal-
ization function. To get this definitional extension, what we need is some formula
𝐹 (𝑥, 𝑦) with two properties:

𝑇 ⊨ ∀𝑥 ∃!𝑦 𝐹 (𝑥, 𝑦)
And for every formula 𝐴(𝑥),

𝑇 ⊨ 𝐹 ⟨𝐴(𝑥)⟩⟨𝐴⟨𝐴(𝑥)⟩⟩
That is, 𝑇 “knows” that 𝐹 is functional, and that 𝐹 applies to each pair of a formula
and its diagonalization.

It is clear, then, that if 𝑇 represents syntax, then any theory that extends 𝑇 will also
represent syntax. If each of those sentences are theorems of 𝑇 , then they are also
theorems of any stronger theory. So, for example, the complete theory of strings
Th𝕊 also represents syntax.

But what about theories in other languages, besides the language of strings? Many
of these also represent syntax. To see this, note that it doesn’t matter whether the
symbols "", ⊕ , and so on that appear in 𝖲 are really primitive symbols. You could
replace each of them with some more complex term—indeed, with some complex
term in another language. The result of doing this is called a translation. If a theory
includes suitable translations of the sentences in 𝖲, then in particular its language
includes a translation of the formula 𝐹 (𝑥, 𝑦) that defines diagonalization, and the
theory also includes corresponding translations of each of the relevant theorems of
𝖲. So a theory like this also represents syntax.

We’ll call a theory like this sufficiently strong: a sufficiently strong theory is one
that includes some suitable translation of the minimal string theory 𝖲. Thus any
sufficiently strong theory represents syntax.

6.11. SYNTAX AND ARITHMETIC 267

We can make this idea more precise using the idea of definitional extensions, again.

6.11.1 Definition
Let 𝑇1 be an 𝐿1-theory, and let 𝑇2 be an 𝐿2-theory. The theory 𝑇1 interprets 𝑇2 iff
𝑇1 has a definitional extension that extends 𝑇2

The idea here is that, within the theory 𝑇1, we can introduce definitions of all of the
basic terms that appear in 𝑇2, and then we can use those definitions to prove all of
the theorems in 𝑇2 as well. (Notice that this also covers the case where 𝑇1 simply
adds to 𝑇2, since a theory is trivially a definitional extension of itself.)

6.11.2 Exercise
Let 𝑇1 and 𝑇2 be theories, and let 𝑇 +

2 be a definitional extension of 𝑇2.

(a) Suppose 𝑇1 ⊇ 𝑇2. (That is, every theorem of 𝑇1 is also a theorem of 𝑇2.)
Then 𝑇1 also has a definitional extension 𝑇 +

2 such that 𝑇 +
1 ⊇ 𝑇 +

2 .

Hint. Notice that any definition in 𝑇2 will also count as a definition in 𝑇1.

(b) If 𝑇1 interprets 𝑇2, then 𝑇1 also interprets 𝑇 +
2 .

6.11.3 Definition
A theory 𝑇 is sufficiently strong iff 𝑇 interprets the minimal theory of strings 𝖲.
That is, 𝑇 has a definitional extension 𝑇 + that extends 𝖲.

In that case, in particular, the language of 𝑇 + includes each of the quotation labels
for strings ⟨𝑠⟩. If 𝑇 is sufficiently strong, and 𝑋 is a set of strings, we say that 𝑇
represents 𝑋 iff such a definitional extension 𝑇 + represents 𝑋 in the usual sense:
there is some formula 𝐴(𝑥) in the expanded language such that 𝑇 + ⊨ 𝐴⟨𝑠⟩ for each
string 𝑠 ∈ 𝑋, and 𝑇 + ⊨ ¬𝐴⟨𝑠⟩ for each string 𝑠 ∉ 𝑋. Likewise for sets of 𝑛-tuples
and functions.

6.11.4 Exercise
If 𝑇 is sufficiently strong, then 𝑇 has a definitional extension that represents
syntax. That is, 𝑇 has a definitional extension 𝑇 + in a language that includes all
of the quotation labels in the language of strings, as well as a function symbol
diag such that

diag⟨𝐴(𝑥)⟩ ≡
𝑇 +

⟨𝐴⟨𝐴(𝑥)⟩⟩

268 CHAPTER 6. THE INEXPRESSIBLE

6.11.5 Exercise (Gödel’s Fixed Point Theorem Version 4)
If 𝑇 is a sufficiently strong theory in a language 𝐿, then for any 𝐿(𝑥)-formula
𝐹 (𝑥), there is an 𝐿-sentence 𝐺 such that

𝐺 ≡
𝑇

𝐹 ⟨𝐺⟩

Hint. By Exercise 6.11.4, 𝑇 has a definitional extension 𝑇 + that represents syn-
tax. This is enough to tell us that 𝐹 (𝑥) has a fixed point in the expanded language
of 𝑇 +. But to get a fixed point sentence in the original language 𝐿, we’ll need
to repeat the proof of Gödel’s Fixed Point Theorem Version 2 (Exercise 6.9.9),
slightly generalizing it.

6.11.6 Exercise (Tarski’s Theorem Version 4)
If 𝑇 is sufficiently strong, and 𝑇 represents the set of theorems of 𝑇 , then 𝑇 is
inconsistent.

Hint. Again, this doesn’t quite follow directly from our earlier versions of
Tarski’s Theorem. But we can just repeat the proof of Tarski’s Theorem Version
3, using our generalized Fixed Point Theorem.

Now let’s turn to an especially important example of a sufficiently strong theory.

We’ve been using strings to represent syntax. But Gödel originally did something
a bit different. Gödel was primarily interested in the foundations of mathematics,
rather than the philosophy of language, and so he was especially interested in arith-
metic. So Gödel came up with a way of describing syntax in arithmetic. This is
called “the arithmetization of syntax”—or “Gödel numbering”. We won’t be mak-
ing any extensive use of this, because arithmetic isn’t really our central focus, but
it’s good to know about it, because this is a much more common way of presenting
Gödel’s and Tarski’s results.

In Definition 5.4.2 we presented theminimal theory of arithmetic 𝖰, which is a very
simple theory with just ten axioms. As it turns out:

6.11.7 Theorem
The minimal theory of arithmetic 𝖰 is sufficiently strong.

The proof of this fact involves finding a way to uniquely represent strings and
string operations using numbers and numerical operations. This involves some non-
trivial number theory—in particular, some facts about prime factors and remainders.

6.11. SYNTAX AND ARITHMETIC 269

Since this isn’t a number theory course, we won’t go into these details. (You can
find a sketch of the proof in CITE BBJ, Lemma 16.5.)

One thing to note, though, is that you really only need the fancy number theory if
you insist on just using the primitive operations (0, suc, +, ·). If you help yourself
to other operations—such as exponentiation—then things get a lot easier. If you
have that (and a few more axioms about how exponentiation works), then instead of
Gödel’s fancy encoding based on prime factors, you can use the same kind of binary
encoding that computers use. The basic idea is to think of numbers as sequences of
“bits” (one and zero, or “on” and “off”); then you can use those sequences to encode
sequences of sequences of bits, and so on. The basic reason exponentiation helps
with this is because the “join” operation for sequences of bits, that takes, say, 10110
and 110 to 10110110, corresponds to the operation on numbers defined by 𝑥·2𝑛 +𝑦,
where 𝑛 is the length of the binary representation of 𝑦. But calculating 2𝑛 (for
arbitrary 𝑛) uses exponents, and not just straightforward addition and multiplication.

6.11.8 Exercise
Using Theorem 6.11.7, show:

(a) 𝖰 does not represent 𝖰.

(b) Any theory that interprets 𝖰 is sufficiently strong. In particular, the theory
of arithmetic Thℕ is sufficiently strong.

(c) Thℕ does not represent Thℕ. Likewise, no definitional extension of Thℕ
represents Thℕ.

Recall from Proposition 6.8.11 that the theory of a definitional expansion of a struc-
ture 𝑆 is a definitional extension of the theory of 𝑆. So if ℕ+ is any definitional
expansion of the structure ℕ, then Thℕ+ does not represent Thℕ.

Since the minimal theory of arithmetic 𝖰 interprets 𝖲, this means that 𝖰 has a def-
initional extension that extends 𝖲—call it 𝖰+. We also have a standard model of
arithmetic, ℕ, which in particular is a model of 𝖰. So ℕ has a definitional expan-
sion ℕ+ which is a model of 𝖰+ (Exercise 6.8.4). This adds the language of strings
onto the language of arithmetic. In particular, it provides an interpretation of the
quotation label ⟨𝑠⟩ for each string 𝑠: each of these terms in the language of strings
also denotes some number. We call this a Gödel number for the string.

6.11.9 Exercise (Tarski’s Theorem Version 5)
For any definitional expansionℕ+ ofℕwhich is amodel of 𝖲, we call the function
that takes each string 𝑠 ∈ 𝕊 to its denotation ⟦⟨𝑠⟩⟧ℕ+ a Gödel numbering.

270 CHAPTER 6. THE INEXPRESSIBLE

We call a set of numbers arithmetically definable iff it is definable in ℕ.

For any Gödel numbering, the set of Gödel numbers of true first-order sentences
of arithmetic is not arithmetically definable.

Hint. Show that if this set were definable in ℕ, then Thℕ+ would represent Thℕ,
and derive a contradiction.

6.12 Review

[TODO. Links]

6.13 Key Concepts

• Definable set/function
• Representable set/function
• Definitional expansion
• Definitional extension
• 𝑇 ′ interprets 𝑇
• 𝑇 represents syntax: 𝑇 represents the self-application function (diagonaliza-

tion)
• Sufficiently strong: 𝑇 interprets 𝖲

6.14 Key Facts

• Gödel’s Fixed Point Theorem. For any theory 𝑇 that represents syntax,
any formula 𝐹 (𝑥) has a “fixed point sentence”: a sentence 𝐺 such that 𝐺 is
equivalent to 𝐹 ⟨𝐺⟩ (in the theory 𝑇).

• Tarksi’s Theorem. For any theory 𝑇 , if 𝑇 represents syntax and 𝑇 represents
𝑇 , then 𝑇 is inconsistent.

• Any sufficiently strong theory represents syntax.

• The following theories are all sufficiently strong:

– The complete theory of strings Th𝕊;
– The minimal theory of strings 𝖲;
– The complete theory of arithmetic Thℕ;
– Peano arithmetic 𝖯𝖠;
– Minimal arithmetic 𝖰;

6.14. KEY FACTS 271

– Axiomatic set theory 𝖹𝖥𝖢;
– Any theory that extends or interprets any of these theories

• Applications of Tarski’s Theorem:

– For any structure 𝑆 that expands 𝕊, truth-in-𝑆 is not definable in 𝑆.
– Truth in ℕ is not arithmetically definable.

272 CHAPTER 6. THE INEXPRESSIBLE

Chapter 7

The Undecidable

But the science of operations … is a science of itself,
and has its own abstract truth and value; … This
science constitutes the language through which alone
we can adequately express the great facts of the
natural world, and those unceasing changes of mutual
relationship which, visibly or invisibly, consciously or
unconsciously to our immediate physical perceptions,
are interminably going on in the agencies of the
creation we live amidst.

Ada Lovelace, notes on Sketch of The Analytical
Engine Invented by Charles Babbage (1842)

For some questions, there is a systematic procedure you can follow that will even-
tually bring you to an answer. For example, suppose you want to know whether a
certain number 𝑛 is prime. To answer this, you can try dividing 𝑛 by each number
less than it, one by one, and see if there is a remainder in each case. If you find a
number 𝑘 < 𝑛 such that dividing 𝑛 by 𝑘 leaves no remainder, then 𝑛 is prime. Oth-
erwise, 𝑛 is not prime. What we have just described is an algorithm for answering
the question of whether a number is prime. An algorithm is a list of instructions for
how to find the answer to a question. If a question can be systematically answered
somehow or other, then it is called effectively decidable.
We can also think about questions which have different sorts of answers. For in-
stance, the question “What is the remainder when 𝑚 is divided by 𝑛?” has a num-
ber as its answer. Many of us learned the long-division algorithm in elementary
school, which provides a systematic way of answering any question of this form. A

273

274 CHAPTER 7. THE UNDECIDABLE

family of questions like this, the answers to which can be arrived at systematically,
is called effectively computable.

We can describe these “families of questions” as functions, whose values are an-
swers to the question. The remainder function takes a pair of numbers (𝑚, 𝑛) to the
number which is the remainder when 𝑚 is divided by 𝑛. Similarly, the question
“Which numbers are prime?” can be represented by the function takes each number
𝑛 to either True or False. Alternatively, using the correspondence between sets and
two-valued functions from Exercise 1.2.13, we can represent this question with the
set of all prime numbers.

The main thing we’ll be working up to in this chapter is a central result about cer-
tain undecidable questions in logic. It turns out that the question “Which first-order
sentences are true in the standard model of arithmetic?” is undecidable: there is
no systematic way of answering it in general. The question “Which first-order sen-
tences are logically consistent?” is also undecidable. (So there will always be work
left for logicians to do!)

7.1 Programs

An algorithm is a general systematic “recipe” for answering a question. (This is
also called an “effective procedure”.) For example, given a string like ABC, what
is the string of the same symbols in reverse order? For this example, the answer
is CBA. How can we work out the answer in general, for an arbitrary string? One
approach is to follow these steps.

1. Set the result to the empty string.

2. Go through the symbols in the string one by one, from left to right. For each
symbol 𝑥, set the result to be the old result with 𝑥 appended to the end.

We can also describe algorithms using formal languages: these are called program-
ming languages, and a formal description written in such a language is called a
program. The first programs were written by Ada Lovelace (and a few other peo-
ple) in the 1840’s, about a century before the first programmable computers were
built. Nowadays programs are everywhere. There are millions of lines of program-
ming code that make your phone work, and about a hundred million for a new car.
Hundreds of different programming languages have been developed for different
purposes: Javascript, C++, Python, Lisp, Haskell, and so on. Here is an example
of a program in the Python programming language that describes (or “implement”)
the algorithm for reversing a string that we just described. (Don’t worry about the

7.1. PROGRAMS 275

details yet. We’ll systematically work through how this language works in the next
two sections.)
result = ""
for symbol in x:

result = symbol + result

Modern programming languages like Python are relatively easy to use to write com-
plex programs—that’s exactly what they’re designed for. The downside is that giv-
ing a full description of the syntax and semantics for any of these languages would
take a whole lot of work, because they are so complicated and have so many fea-
tures.1 In this chapter, what we’re primarily interested in isn’twriting programs, but
rather analyzing programs—showing certain properties they have. So for our pur-
poses, it makes sense to look at a much simpler programming language than any of
these. It turns out that this simple programming language can answer any question
that any of the others can. (We won’t prove this ourselves, since that would involve
the very complicated task of saying precisely what questions Javascript or Python
or Haskell can answer. But computer scientists have done this—and it turns out
that the answer is: exactly the same questions as our simple language.) In fact, for
most purposes we could think of any of these languages as just our little language,
with a whole lot of convenient abbreviations.

So our first job is to describe a simple programming language. Programs are expres-
sions in a formal language. This language is very similar in spirit to the first-order
languages we’ve been using already—for example, this language also uses variables.
But the details are a bit different. For example, we don’t have any quantifiers—
because typically, finding out whether there is something of a certain sort practi-
cally involves looking for it, in some systematic way. If our domain is infinite, then
there’s no guarantee ahead of time that a search through the whole domain will ever
end. In fact, as we’ll show later on, some things we can say using quantifiers aren’t
decidable at all. So unrestricted quantifiers over an infinite domain aren’t a good fit
for programming languages.

Themost important thing about these basic programswe’ll describe is that they only
do things that can be worked out mechanically and systematically—given enough
time and space to write things down. So if we can write a program in this little
language that answers a certain question, this shows that the question is effectively
decidable.

The language we’ll use is a very simple subset of the Python language. We’ll call
1For example, formally defining a denotation function for a simplified version of the Python lan-

guage is the topic of a hundred-page master’s thesis (see Smeding 2009).

276 CHAPTER 7. THE UNDECIDABLE

it Py. Because it’s a subset of real Python, that means you can enter our programs
into any Python interpreter and they should run. This is a useful way to check your
work.2

There is a very small set of basic rules for forming Py-programs. This is convenient
for proving things about the language: we don’t have to go through zillions of spe-
cial cases in our proofs. But to actually write programs in this language, it will be
useful to introduce shorthand expressions that encapsulate common patterns. This
situation is analogous to what we did for the syntax of first-order logic: we used
a very small set of basic syntax rules, and then we treated other symbols (like →,
∨, and ∃) as abbreviations for expressions that just use the basic symbols. We’ll
discuss some of these shorthands along the way.

In this section we’ll take an informal tour of how programs can be written in Py,
looking at some examples and getting a bit of practice writing programs. In the next
section we’ll give a more formally precise description of the syntax and semantics
for programs.

Py has two different syntactic categories. This is analogous to the distinction in
first-order logic between terms and formulas. In Py, the two kinds of expressions
are called terms and programs.

2For example, you can use this one: https://www.online-python.com
There’s one catch: we have a few operations that aren’t built into standard Python. So to make our

programs work in a standard Python interpreter, you need to add these lines to the beginning of your
code:
def head(x):

if len(x) > 0:
return x[0]

else:
return ""

def tail(x): return x[1:]
quo = "\""
com = ","
rpa = "("
lpa = ")"
new = "\n"

After that, everything should work ok.
You can use the statement print(x) in your programs to show the value of the variable x on the

screen at any stage of computation. This is helpful for keeping track of how your program is working.
Another thing to watch out for is that Python interpreters are picky about white space. If you are

typing programs into a Python interpreter, you should make sure to always indent using four spaces—
not “tabs”—and watch out that your while, for, and if blocks are correctly lined up. A good text
editor will help take care of these things for you automatically. See https://en.wikipedia.org/wiki/So
urce-code_editor#Notable_examples

https://www.online-python.com
https://en.wikipedia.org/wiki/Source-code_editor#Notable_examples
https://en.wikipedia.org/wiki/Source-code_editor#Notable_examples

7.1. PROGRAMS 277

Terms

Terms stand for things—in particular, terms in Py stand for strings. Here are some
examples of terms:
""
x
"A"
x + y
head(x)
tail(y)

The terms in Py are very similar to the terms in the language of strings, but there
are some slight differences to fit with Python conventions. We use + rather than ⊕ to
represent the result of joining two strings together end to end. (Python syntax uses
the same symbol + both for adding together numbers and also for joining together
strings.) The term "" denotes the empty string.

The term x is a variable, and it denotes whatever value happens to be assigned to
the variable. In first-order logic it’s customary to use short strings like x, y₁, z,
etc., for variables. When we’re writing programs it’s customary to use longer and
more informative variable names. For instance, wemight use names like result, or
sequenceOfPrimeNumbers, or awesomeString, or pretty much whatever we want.

The term "A" denotes the singleton string A. We have a term like this for each
symbol in the standard alphabet, just like in the first-order language of strings. (Re-
member, our standard alphabet is the Unicode Character Set. Conveniently, this is
the same standard alphabet that modern Python interpreters use.) In almost every
case, we get this term by putting quotation marks around the symbol itself. (Once
again, there are a few exceptions: we use quo for ", com for ,, lpa for (, rpa for),
and new for the newline symbol.)3

All of these terms so far are basically familiar from the language of strings. Besides
these, we have two new term-formers. The term head(x) denotes the string con-
taining just the first symbol from the string denoted by x, as long as that string is
non-empty. Otherwise, we get the empty string. The term tail(x) denotes all of
the rest of the string denoted by x, except the first symbol—again, unless the string
denoted by x is empty, in which case again we get the empty string.

We can build up complex terms in Py by putting together these basic pieces in arbi-
trary combinations, just like before. For example, we can build up these complex

3In fact, there are a few other exceptions for how Python interpreters handle some other special
symbols, but we can ignore these.

278 CHAPTER 7. THE UNDECIDABLE

terms:
"A" + (x + "")
head(y + "A" + "B")
tail(head(tail(head("A" + "B" + new + "C" + "D"))))

Let Statements

A statement is an instruction, which says to do something. This is a bit different
from the sentences we’ve been talking about so far, which describe how things
already are. A statement describes a way of changing the way things are.

There are two basic kinds of statement. The first kind of statement is a “let” state-
ment, which looks like this:
x = a

You should read this as an imperative sentence—“let 𝑥 be 𝑎 from now on”—and
not as a declarative sentence “𝑥 is 𝑎”. (It’s a bit confusing that programmers use
the = sign this way—rather than something else for the purpose, like x := a—but
unfortunately this is almost completely standard.4 “Let” statements are also called
“assignments”, which is also unfortunately confusing terminology, since “variable
assignment” has a completely different meaning in logic.) So we can write things
like
x = x + "A"

If we read this as a declarative sentence (“𝑥 is identical to the result of joining 𝑥
with A”) then it is false, no matter what x stands for. No finite string is one symbol
longer than itself. But the imperative reading means “change the value of x: from
now on, let x stand for the string which results from appending the string "A" to the
end of the string that x stood for until now.” Whatever string x used to stand for,
make it now stand for a longer string than that. In imperative programs, the values
of variables can change.

A program is a string of statements joined together, which means to do what each
of the statements says, one after another. For example, we can chain together “let”
statements like this:

4I don’t know if this is true, but I’ve heard that this conventional use of = rather than :=was settled
on for an incredibly dumb reason: the language designers analyzed some code, and concluded that
programmers use “let” statements more often than they use actual equality—and they wanted to save
a keystroke. Languages that use = for “let” statements typically use == for equality.

7.1. PROGRAMS 279

foo = ""
bar = "A"
bar = bar + bar
result = head(bar)

First, this sets the variable foo so it denotes the empty string. Second, this sets the
variable bar so it denotes the string A. Third, this changes the variable bar so it
instead denotes AA. Finally, this sets the variable result to the value A.

You can think of the program as a list of instructions for someone who has a sheet
of paper that lists all of the variables and their values—for example:

foo
bar A

(The value of foo in this table is the empty string.) The person follows the instruc-
tions one by one. When they reach a “let” statement, they write in some new value
in the right-hand column, erasing whatever might already been written there. For
instance, when they see the third instruction
bar = bar + bar

they will change the table to look like this:

foo
bar AA

After the final instruction, the table will then say:

foo
bar AA
result A

The idea is that when they reach the end of the instructions, they’ll tell you what is
written in the result row of the table, which represents the “output” of the program.

7.1.1 Example
The following Py-program sets the result variable to the second symbol in what-
ever string is initially represented by x (if the length of x is at least two).

280 CHAPTER 7. THE UNDECIDABLE

allButFirst = tail(x)
result = head(allButFirst)

7.1.2 Exercise
Write Py-programs that set the result variable to the following values.

(a) The third symbol in the string represented by the variable x (if the length
of this string is at least three.)

(b) The string which has the same first two symbols as the string that x stands
for and is followed by all but the first two symbols of the string that y
stands for (when x and y both stand for strings with length at least two.)

Say we want to write a program that uses a specific string, such as True. One way
to do this would be to write this:
trueString = "T" + "r" + "u" + "e"

But that’s a bit of a nuisance, so we’ll use this handy shorthand.
trueString = "True"

Officially, "True" is just an abbreviation for "T" + "r" + "u" + "e". Similarly,
"ABC" is an abbreviation for "A" + "B" + "C", and so on. This is just like how we
used symbols like → in first-order logic as abbreviations for expressions using only
our “official” logical symbols. We are keeping our official language very simple,
to make it easy to prove things about it, and then introducing shorthands that make
the language easier to use. Programmers call this “syntactic sugar.”

Loops

Py has two basic kinds of statements. We just discussed the first kind: let statements.
The second basic kind of statement is a loop. Loops let us write programs that do
the same steps over and over again, until some “halt” condition is met.

7.1.3 Example
This program takes a string and returns the same string in reverse order. The basic
idea is that we’re going to go through the symbols in the string one by one from left
to right, and paste them together into a new string going from right to left.

Here’s how it works in more detail. First, set the result to the empty string. Then
we do the following steps over and over until x stands for the empty string: remove

7.1. PROGRAMS 281

the first symbol from the x-string, and add it onto the left side of the result.

Here’s the whole program:
result = ""
while x != "":

result = head(x) + result
x = tail(x)

The symbol != is how we write “is not equal to” (that is, ≠) in Python syntax.
Whatever value x starts out with, when the program reaches the end, result will
have that same string in reverse order.

In general, for any terms 𝑎 and 𝑏, and any block of statements 𝐴, we can build this
kind of statement:

while 𝑎 != 𝑏 :
𝐴

Thismeans to repeatedly dowhat 𝐴 says as long as the values of 𝑎 and 𝑏 are different.
We don’t stop repeating the block until 𝑎 and 𝑏 have the same value.

In general, we’ll think of a program as taking certain “input” variables (in this case
x), doing some work, and finally putting the result in an “output” variable (result).

“Let” statements and “while” loops are the only basic kinds of statements we need
for our programming language. But writing programs with just these statements
can get pretty cumbersome. To write complicated programs, it’s very helpful to
introduce some more abbreviations for common patterns. At this point we’re done
with the “low-level” programming language: our basic tools. The rest of this section
introduces some “higher-level” programming structures, which helps show what
our programming language is capable of.

Branching

One important thing we can do is branching. We can write programs that can go in
two different alternative directions, depending on whether two strings are the same.
if a == b:

flag = "True"
else:

flag = "False"

282 CHAPTER 7. THE UNDECIDABLE

Again, the meaning of this is different from the conditional in first-order logic, be-
cause it is an imperative statement meant to change the world, rather than a declar-
ative sentence meant to describe it. Here’s what it means. First, evaluate whether
the terms a and b denote the same string. (Note that we use a double equals sign
==. This is because the single equals sign = was already taken for “let” statements.)
If a and b have the same value, then we do the statements in the first block—in
this case, we set the value of the variable flag to True. If a and b denote different
strings, then instead we do the statements after the else—in this case, we set flag
to False.

Here’s another example:
if s == "":

result = "It's empty!"
else:

result = head(s)

If s is not empty, then this statement sets the value of result to its first symbol.
Otherwise, it just sets the result to be an error message.

We don’t need to include if statements as basic building blocks, because we can
always replace them using let statements and while loops. The trick is to write
loops that are guaranteed to only happen at most one time. In general, if 𝐴 and 𝐵
are programs and 𝑎 and 𝑏 are terms, we can treat this

if 𝑎 == 𝑏 :
𝐴

else:
𝐵

as an abbreviation for this:

x = 𝑎
finished = "False"

while x != 𝑏 :
𝐵
x = 𝑏
finished = "True"

while finished != "True":
𝐴

7.1. PROGRAMS 283

finished = "True"

Here x and finished should be variables that aren’t used elsewhere in the program.
The idea is that we have a loop for 𝐵 that runs once if 𝑎 and 𝑏 have different values,
and a second loop for 𝐴 that runs once if the first loop didn’t run.

Sometimes we don’t care about the else part of an if-statement: we don’t want
to do anything in that case. We can indicate this by just leaving out the else part.
That is, this program:

if 𝑎 == 𝑏 :
𝐴

means just the same thing as this one:

if 𝑎 == 𝑏 :
𝐴

else:
()

where the else block is the empty program. We can also write

if 𝑎 != 𝑏 :
𝐴

as a synonym for

if 𝑎 == 𝑏 :
()

else:
𝐴

(Remember that != is Python’s standard way of writing “not equal”.) Sometimes
it’s also useful to chain together if statements. The Python abbreviation for this
looks like this (elif is short for else if).

if 𝑎1 == 𝑏1 :
𝐴1

elif 𝑎2 == 𝑏2 :
𝐴2

elif 𝑎3 == 𝑏3 :
𝐴3

284 CHAPTER 7. THE UNDECIDABLE

This means the same thing as

if 𝑎1 == 𝑏1 :
𝐴1

else:
if 𝑎2 == 𝑏2 :

𝐴2
else:

if 𝑎3 == 𝑏3 :
𝐴3

The shorthand is nice to keep the indentation from getting out of control.

7.1.4 Exercise
Show the following questions are decidable by writing a program that returns
True if the answer is “yes”, and False if the answer is “no”, using if statements.

(a) Are the values of s and t both equal to True?

(b) Are either of the values of s or t equal to True?

(c) Is the length of s at least two?

It will be useful to have names for the first two programs, to refer back to them
later on: in particular, let’s abbreviate them and(s, t), and or(s, t).

Bounded Loops

A common pattern in programs is to go through each of the symbols in a string one
by one, do something with each symbol, and stop when we reach the end of the
string. This is called a for loop.

For example, this program decides whether every symbol in a string is A.
result = "True"
for symbol in s:

if symbol != "A":
result = "False"

The for loop goes through the elements of the string represented by s one by one,
and stores each symbol as the value of the variable symbol. This is similar to a
while loop, but it is more specialized. One important feature of a for loop is that
it is guaranteed to eventually stop, when it gets to the end of the string. In contrast,

7.1. PROGRAMS 285

in principle a while loop might go on running forever, if the equality test is never
passed.

Again, though for loops are very useful, we don’t need to include them as an ex-
tra primitive in our programming language, because they can be eliminated using
while loops. In general, suppose 𝑥 is any variable, 𝑎 is any term, and 𝐴 is some
program. We can understand this notation—

for 𝑥 in 𝑎 :
𝐴

—as a shorthand for this, where 𝑦 is a variable that is not used elsewhere in the
program—

𝑦 = 𝑎
while 𝑦 != "":

𝑥 = head(𝑦)
𝑦 = tail(𝑦)
𝐴

7.1.5 Example
This program takes a string and repeats each symbol an extra time. For instance, it
takes ABC to AABBCC.
result = ""
for symbol in s:

result = result + symbol + symbol

7.1.6 Example
We can rewrite the reverse program a bit more concisely using a for loop.
result = ""
for symbol in x:

result = symbol + result

When you are writing programs, feel free to use if … elif … else branching and
for-loops. Since we know that each of these can be eliminated and replaced with
simple let and while statements, this means that for practical purposes we don’t
have to eliminate them from our programs.

286 CHAPTER 7. THE UNDECIDABLE

7.1.7 Exercise
Write a program that computes the “dots” function from Exercise 2.4.13. For
example, the output of the program for input ABC should be •••.

7.1.8 Exercise
Write programs to show that the following questions are decidable.

(a) Is 𝑠 at least as long as 𝑡?
(b) Are 𝑠 and 𝑡 the same length?

7.2 Syntax and Semantics

Syntax for Programs

Here’s a summary of the official syntactic rules for terms and programs in the lan-
guage Py.

We’ll start with terms. Remember that in Section 3.2 we chose some constants
for the language of strings: "" for the empty string, and constants like "A", "B",
quo, and new for single-symbol strings. Py is also a language for talking about
strings, so we will use each of these same constants as Py-terms. But we will also
add in two extra function symbols head and tail for “unpacking” strings. (These
functions were definable in the first-order language of strings, so we didn’t need to
include them there—but the definition used quantifiers, which we don’t have in our
programming language.)

7.2.1 Definition
Let 𝐿Py be the signature of Py, and let ℙ𝕪 be the basic Py structure. This is very
similar to the standard string structure. The domain of ℙ𝕪 is the set of all strings
𝕊. The signature of ℙ𝕪 has the same set of names as in 𝕊: "" denoting the empty
string, and for each symbol 𝑎 ∈ 𝔸 in the alphabet, a name 𝑐𝑎 denoting the length-
one string (𝑎). The signature 𝐿Py also includes two one-place function symbols
head and tail, where

[head(])ℙ𝕪 ((𝑎) ⊕ 𝑠) = (𝑎) for each 𝑎 ∈ 𝔸 and 𝑠 ∈ 𝕊
[head(])ℙ𝕪 () = ()[tail(])ℙ𝕪 ((𝑎) ⊕ 𝑠) = 𝑠 for each 𝑎 ∈ 𝔸 and 𝑠 ∈ 𝕊
[tail(])ℙ𝕪 () = ()

7.2. SYNTAX AND SEMANTICS 287

Finally, 𝐿Py contains one two-place function symbol +, where

[+]ℙ𝕪 (𝑠, 𝑡) = 𝑠 ⊕ 𝑡 for every 𝑠, 𝑡 ∈ 𝕊

There are no predicates in 𝐿Py.

As with terms and formulas in first-order logic, it will be helpful to explicit about
what variables a term or program uses. For terms, this works the same way as
before: if �̄� is a finite sequence of variables, we will talk about the (Py) terms of �̄�.
These are the variables whose values are provided as “inputs” for the term. Recall,
though, that a term doesn’t have to use every input variable that it’s provided with.
For example, x + x is a term of (x), but it also counts as a term of (x, y, z).

7.2.2 Definition
For a sequence of tokens �̄�, The Py-terms of �̄� are just the 𝐿Py(�̄�)-terms A Py-term
(without qualification) is a Py-term of some sequence of variables or other.

7.2.3 Definition
We define the set of Py-programs recursively. First, a base case.

The empty string () is a program.

Next we have two recursive rules for building up complex programs. For each token
𝑧 and Py-term 𝑡,

𝐴 is a program
𝑧 = 𝑡
𝐴 is a program

Finally, for any Py-terms 𝑡1 and 𝑡2,

𝐴 is a program from �̄� to �̄� 𝐵 is a program from �̄� to ̄𝑦
while 𝑡1 != 𝑡2:

𝐴
𝐵

is a program

That is our basic definition. But it will also be useful to do some explicit variable
management. In first-order logic, it was important to keep track of the free variables

288 CHAPTER 7. THE UNDECIDABLE

in formulas. There is a similar concept for programs, but now variables have two
different roles to play: they can be inputs or outputs. Consider an example.
y = ""
while x != "":

y = y + head(x) + head(x)
x = tail(x)

In this program, the variable x is treated as an input. The program “reads” the
variable, and how it works depends on what value x has. The variable y is treated
as an output. The program doesn’t need y to already have a value when it starts, and
it is guaranteed to set some value for y by the time it finishes. Accordingly, we can
call this a program from x to y. A program from x to y is allowed to read the value
of x, and it is required to write a value for result.

In general, we will want to keep track of the input and output variables for our pro-
grams. If �̄� and ̄𝑦 are two sequences of variables, we will define the (Py) programs
from �̄� to ̄𝑦. For short, we will let Py(�̄� → ̄𝑦) be the set of all such programs. A
Py(�̄� → ̄𝑦)-program is allowed to read values from any of the variables in the se-
quence �̄�, and it is required to write a value for each of the variables in the sequence

̄𝑦. A program doesn’t have to read all of its available inputs, and it is allowed to
write values for variables that are not considered to be outputs.

We will take some notational shortcuts. For example, we will write Py(𝑥, 𝑦 → 𝑧)
as a shorthand for Py((𝑥, 𝑦) → (𝑧)). For first-order formulas, we used the notation
𝐴(𝑥) to indicate that 𝐴 is a formula of the variable 𝑥. Similarly, for programs we
will use the notation 𝐴(𝑥, 𝑦 → 𝑧) to indicate that 𝐴 is a program from (𝑥, 𝑦) to 𝑧.
We’ll use the notation 𝐴(𝑥) for a program that has 𝑥 as an input variable, leaving
any output variable unspecified.

7.2.4 Definition
Let �̄� and ̄𝑦 be any sequences of variables.

The empty program does not set any new variables, so the only things that it gets to
pass on as an output is whatever is already passed to it as an input.

If every variable in ̄𝑦 appears somewhere in �̄�:

() is in Py(�̄� → ̄𝑦).

A let statement sets the value of a new variable 𝑧. So the program that comes after
the let statement can now use the value of that variable, even if it wasn’t already pro-
vided as an input. Whatever outputs the subsequent program has are also available

7.2. SYNTAX AND SEMANTICS 289

as outputs for the program as a whole. (This is analogous to the quantifier in first-
order logic: the variable 𝑧 is “bound” by a let statement, which makes it available
to the subsequent program even if it wasn’t already available.)

Let 𝑧 be a token and let 𝑡 be a term of �̄�.

𝐴 is in Py(�̄�, 𝑧 → ̄𝑦)
𝑧 = 𝑡
𝐴 is in Py(�̄� → ̄𝑦)

Finally, consider while loops. The program inside the while is going to run as a
loop, potentially updating the values of all of its input variables each time that it
runs. Everything it needs as an input must also be one of its outputs. Finally, these
updated values will be passed on to the program that comes after the while loop.
(There is no guarantee that the loop will run even once, so after the loop finishes,
we cannot rely on any additional variables that might be set inside the loop.)

Let 𝑡1 and 𝑡2 be Py(�̄�)-terms.

𝐴 is in Py(�̄� → �̄�) 𝐵 is in Py(�̄� → ̄𝑦)
while 𝑡1 != 𝑡2:

𝐴
𝐵

is in Py(�̄� → ̄𝑦)

7.2.5 Example
Consider our familiar “reverse” program.
result = ""
while x != "":

result = head(x) + result
x = tail(x)

To see how the definition works, let’s work through it step by step to show that this
is indeed a program from the input variable x to the output variable result. We
will work backwards.

The clause for “let” statements tells us that it is enough to show two things:

1. "" is a term of x—which is clearly true, since it doesn’t use any variables
besides x (and indeed it doesn’t even use x).

2. The remaining program is a program from (result, x) to result:

290 CHAPTER 7. THE UNDECIDABLE

while x != "":
result = head(x) + result
x = tail(x)

To show 2, we need:

3. x and "" are each terms of (result, x)—which is again clearly true.

4. This inner block is a program from (result, x) to (result, x):
result = head(x) + result
x = tail(x)

5. The remaining program—that is, the empty string—is a program from
(result, x) to result. This is true, since the output result is included in
the sequence of input variables.

To show 5, we need:

6. head(x) + result is a term of (result, x).
7. x = tail(x) is a program from (result, result, x) to (result, x). (The

fact that result gets repeated here is kind of annoying, but it doesn’t really
matter, sowe’ll just let it be for now. TODO. Next pass---try to smooth this out?)

So then what we need to show is:

8. tail(x) is a term of (result, result, x)
9. The empty string is a program from (x, result, result, x) to (result, x)—

which is true.

We have 8, since x is in the list of inputs. And we have 9, since each variable in the
list of outputs is included in the list of inputs. So we’re done.

Some Syntactic Details*

That should get the idea across, but beforewemove on, let’s get clear on a few details
about what this definition means. (You can skip over these details, but they’re
important if you’re going to do some of the parsing exercises in Section 7.4.)

Programs are strings. (Just like always, we can ask, is a program really just a string,
or are programs some other structure that can be represented by a string? This is a
fair question, but it will make things easier if we suppose that a program just is a
certain string.) A string is just a bunch of symbols, one after another. But because
programs can get pretty long, it would be a pain to write out a program in a single

7.2. SYNTAX AND SEMANTICS 291

line of text. That’s no problem, though: we have a special symbol in our alphabet
that means “start a new line”. So, for example, take this program:
y = x
z = y

We could spell out the sequence of symbols in this string very explicitly like this:

(y, , =, , x, new line, z, , =, , y, newline)

In general, we can spell out the syntax rule for let statements very explicitly like
this: if 𝑥 is a variable, 𝑡 is a term, and 𝐴 is a program, then

𝑥 ⊕ = ⊕ 𝑡 ⊕ newline ⊕ 𝐴

is also a program.

A second note is that our syntax uses indentation to indicate the structure of a while
loop. Like writing programs in multiple lines, this “white space” convention makes
programs easier to read. Each statement within a while loop should be moved over
to the right by adding some white space to the beginning of the line (officially, the
space symbol four times).

Let’s be explicit. For any program 𝐴, there is a unique sequence of strings
(𝑠1, 𝑠2, …, 𝑠𝑛) which are the lines of 𝐴 (see Exercise 4.3.4). None of these strings
contains any newline symbols, and

𝐴 = 𝑠1 ⊕ newline
⊕ 𝑠2 ⊕ newline
⋮
⊕ 𝑠𝑛 ⊕ newline

Then
indent(𝐴) = ⊕ 𝑠1 ⊕ newline

⊕ ⊕ 𝑠2 ⊕ newline
⋮
⊕ ⊕ 𝑠𝑛 ⊕ newline

(To be even more explicit, we could define this indent function recursively. Com-
pare the “tokenization” function from Section 4.3.)

Now we can state the syntax rule for while statements more explicitly. If 𝑡1 and 𝑡2
are terms, and 𝐴 and 𝐵 are programs, then this is also a program:

while ⊕ 𝑡1 ⊕ != ⊕ 𝑡2 ⊕ : ⊕ newline ⊕ indent(𝐴) ⊕ 𝐵

292 CHAPTER 7. THE UNDECIDABLE

That’s it for the syntax of programs.

As with first-order logic, an important fact about these definitions is that there is
no syntactic ambiguity in our notation. Py-terms and programs also each have an
Injective Property. (This can be officially proved by writing and checking a parsing
function, as in Section 3.3.) But we will skip over these details.

Semantics for Programs

So far we’ve been working with an intuitive sense of how programs work. Now
let’s give a precise account of the meaning of the programming language. Just like
we did with first-order logic, we can recursively define a denotation function for
Py-terms and programs.

For terms, things are pretty easy.

7.2.6 Definition
In Definition 7.2.1 we defined the Py-structure ℙ𝕪 , which is a variant on the stan-
dard string structure, modifying its function symbols to match the syntax of Py. The
denotation of any Py-term is just the same as its denotation in the structure ℙ𝕪 , in
the sense we defined way back in Definition 3.2.10. To be more explicit, let �̄� be
any sequence of variables, let 𝑡 be a Py(�̄�)-term, and let ̄𝑠 be a sequence of strings.
Then we define the Py-denotation of 𝑡 to be

⟦𝑡⟧(̄𝑠) = ⟦𝑡⟧ℙ𝕪 (̄𝑠)

(Recall that this is the same thing as

⟦𝑡⟧ℙ𝕪[𝑥1↦𝑠1,…,𝑥𝑛↦𝑠𝑛]

where we expand the structure ℙ𝕪 by assigning values to each of the variables in
�̄�.)

The denotation of a program is a function—in particular, a function from a sequence
of values for its input variables, to a sequence of values for its output variables.

For example, consider this very simple program:
x = x + "C"

The result of running it is to change the value of x by adding the letter C to the end:
for example, it takes A to AC, or US to USC. This is a program from x to x, and its
denotation is the function that takes each string 𝑠 to the extended string 𝑠 ⊕ A.

7.2. SYNTAX AND SEMANTICS 293

Let’s state the general semantic rule for a “let” program. First, recall the syntactic
rule: for any variable 𝑧 and term 𝑡 of variables �̄�:

𝐴 is in Py(�̄�, 𝑧 → ̄𝑦)
𝑧 = 𝑡
𝐴 is in Py(�̄� → ̄𝑦)

Since we are giving a recursive definition, we can assume that we already know
what function the subsequent program 𝐴 denotes. The “let” statement just needs to
provide the right value of the variable 𝑧 to this function—namely, the string denoted
by 𝑡.

⟦
𝑧 = 𝑡
𝐴 ⟧ = ⟦𝐴⟧(𝑠, ⟦𝑡⟧(̄𝑠))

What this says is to get the string denoted by 𝑡, put this string together with the rest
of the input strings, and give this sequence of inputs to the rest of the program.

We skipped over the semantics of the empty program. Intuitively, this program
doesn’t do anything at all. But its denotation is not totally trivial, because the empty
program can have different sequences of input and output variables. So the empty
program denotes different functions with respect to different choices of variables.
It denotes a function that picks out the appropriate output values from among the
input values. For example, the empty program is in Py(𝑥, 𝑦 → 𝑦). Its denotation
with respect to these variables is the function that takes each pair of strings (𝑠, 𝑡) to
its second coordinate 𝑡. Similarly, the empty program is also in Py(𝑥, 𝑦, 𝑧 → 𝑥, 𝑧).
With respect to these variables, it denotes the function that takes each triple (𝑠, 𝑡, 𝑢)
to the pair (𝑠, 𝑢). Functions like these are called projection functions.

In practice this is very simple, but spelling it out precisely and generally is a little
bit complicated. If the input variables are �̄�, then each of the output variables ̄𝑦
for the empty program has to be included somewhere in �̄�. That means there is a
function ℎ that takes each index 𝑖 between 1 and the length of ̄𝑦 to some index ℎ(𝑖)
between 1 and the length of �̄�, whre ℎ(𝑖) is the last position where 𝑦𝑖 appears in �̄�.
So we have:

̄𝑦 = (𝑦1, …, 𝑦𝑛) = (𝑥ℎ(1), …, 𝑥ℎ(𝑛))
(In the example of 𝑥, 𝑦 → 𝑦, ℎ = [1 ↦ 2]. In the example of 𝑥, 𝑦, 𝑧 → 𝑥, 𝑧,
ℎ = [1 ↦ 1, 2 ↦ 3].) Then for a sequence of strings ̄𝑠 of the same length as �̄�, we
have

⟦()⟧(̄𝑠) = (𝑠ℎ(1), 𝑠ℎ(2), …, 𝑠ℎ(𝑛))
That is, we just pick out the values in the input sequence that correspond to the
variables in the output sequence, in the correct order. :::

294 CHAPTER 7. THE UNDECIDABLE

Finally, we have while loops. Recall the syntactic rule: for any Py(�̄�)-terms 𝑡1 and
𝑡2:

𝐴 is in Py(�̄� → �̄�) 𝐵 is in Py(�̄� → ̄𝑦)
while 𝑡1 != 𝑡2:

𝐴
𝐵

is in Py(�̄� → ̄𝑦)

Intuitively, what this should do is run the function denoted by 𝐴 as many times as
it takes until 𝑡1 and 𝑡2 denote the same string. Except this isn’t guaranteed to ever
happen. Some programs go into infinite loops—like this one:
while "A" != "B":

x = x

And some programs go into infinite loops for some inputs, but not for others—like
this one:
while x != "B":

x = x

If the input value of x is B, then this program eventually stops, but if it is anything
else then it runs forever.

So far we have ignored this, but we can do so no longer: in general, the denotation
of a program is a partial function, which may be undefined for some inputs. We’ll
write 𝑓(𝑠) = ∗ to indicate that 𝑓 does not have any output for the input 𝑠, and
we’ll adopt the convention that 𝑓(∗) = ∗—if the input is undefined, so is the output.
Similarly, for a two-place function 𝑓(𝑠, ∗) = 𝑓(∗, 𝑠) = ∗—if any input for a function
is undefined, so is the output.

Consider a while block
while 𝑡1 != 𝑡2:

𝐴
𝐵

Let’s start by considering what happens if the while loop runs forever. We can
define a function that says what the output looks like after any number of steps.
We’ll call the result after 𝑘 steps ⟦𝐴⟧𝑘, and define it recursively:

⟦𝐴⟧0(̄𝑠) = ̄𝑠
⟦𝐴⟧𝑘+1(̄𝑠) = ⟦𝐴⟧(⟦𝐴⟧𝑘(̄𝑠))

Note that if we ever end up ∗ instead of real outputs, then we get ∗ forever after.

7.2. SYNTAX AND SEMANTICS 295

Now there are two different cases to consider.

1. There is some smallest number 𝑘 such that

⟦𝑡1⟧(⟦𝐴⟧𝑘(̄𝑠)) = ⟦𝑡2⟧(⟦𝐴⟧𝑘(̄𝑠))
In this case,

⟦

while 𝑡1 != 𝑡2:
𝐴

𝐵 ⟧
(̄𝑠) = ⟦𝐵⟧(⟦𝐴⟧𝑘(̄𝑠))

That is, we keep applying the function denoted by 𝐴 until we get a result with
respect to which 𝑡1 and 𝑡2 have the same denotation, and then we apply the
function denotated by 𝐵 to that result.

2. There is no such 𝑘. In this case,

⟦

while 𝑡1 != 𝑡2:
𝐴

𝐵 ⟧
= ∗

That completes the official semantics.

7.2.7 Definition
The denotation of a program 𝐴 in Py(�̄� → ̄𝑦) is the partial function from sequences
of strings to sequences of strings defined recursively by the following three rules.

For the empty string () ∈ Py(𝑥1, …, 𝑥𝑛 → 𝑥ℎ(1), …, 𝑥ℎ(𝑛)),

⟦()⟧(̄𝑠) = (𝑠ℎ(1), 𝑠ℎ(2), …, 𝑠ℎ(𝑛))

For a variable 𝑧, a Py(�̄�)-term 𝑡, and a program 𝐴 ∈ Py(̄𝑥, 𝑧 → ̄𝑦)

⟦
𝑧 = 𝑡
𝐴 ⟧ = ⟦𝐴⟧(𝑠, ⟦𝑡⟧(̄𝑠))

For Py(�̄�)-terms 𝑡1 and 𝑡2 and programs 𝐴 ∈ Py(�̄� → �̄�) and 𝐵 ∈ Py(�̄� → ̄𝑦),

⟦

while 𝑡1 != 𝑡2:
𝐴

𝐵 ⟧
(̄𝑠) =

⎧⎪
⎪
⎨
⎪
⎪⎩

⟦𝐵⟧(⟦𝐴⟧𝑘(̄𝑠))
for the smallest 𝑘 such that
⟦𝑡1⟧(⟦𝐴⟧𝑘(̄𝑠)) = ⟦𝑡2⟧(⟦𝐴⟧𝑘(̄𝑠)),
if there is one

∗ otherwise

A program 𝐴 halts for input ̄𝑠 iff ⟦𝐴⟧(̄𝑠) is defined; that is, ⟦𝐴⟧(̄𝑠) ≠ ∗.

296 CHAPTER 7. THE UNDECIDABLE

Now that we have a formal definition of the semantics of programs, we can ask:
which functions can be expressed by a program? In other words, which functions
are computable using Py programs?

7.2.8 Definition
(a) A (partial) function 𝑓 ∶ 𝕊 → 𝕊 is Py-computable iff it is the denotation of

some program.

(b) A set of strings 𝑋 ⊆ 𝕊𝑛 is Py-decidable iff its characteristic function is Py-
computable: that is, the function that takes each sequence of strings ̄𝑠 ∈ 𝑋
to True and each string 𝑠 ∉ 𝑋 to False is the denotation of some program.

These definitions generalize to functions with more than one input or output, and
similarly to sets of 𝑛-tuples.

(a) A (partial) function 𝑓 ∶ 𝕊𝑚 → 𝕊𝑛 is Py-computable iff it is the denotation
of some program.

(b) A set of 𝑛-tuples of strings 𝑋 ⊆ 𝕊𝑛 is Py-decidable iff its characteristic
function is Py-computable.

These definitions are closely analogous to our earlier definitions of definable func-
tions and sets. The key difference is just what kind of language we are using: then,
we were talking about the extensions of expressions in a first-order language, and
now we are talking about the extensions of expressions in a programming language.
In a slogan, we could say that a computable function is one that is definable using a
programming language, rather than a first-order language, and likewise, a decidable
set is one that is definable using a programming language.

7.2.9 Example
Prove that the following program (from x to y) halts for any value of x.
while x != "A":

x = "A"
y = tail(x)

Proof
We’ll work this one out in tedious detail, to show how all the pieces are working.

At the top level, we have a while program put together from two terms, x and A,
and two subprograms, x = "A" (from x to x) and y = tail(x) (from x to y). Let
𝐴 = x = "A". For a given string 𝑠, we need to check whether there is some 𝑘 such

7.3. THE CHURCH-TURING THESIS 297

that
⟦x⟧(⟦𝐴⟧𝑘(𝑠)) = ⟦"A"⟧(⟦𝐴⟧𝑘(𝑠))

The effect of running the let-statement (and the empty program that follows it) is to
update the value of the variable to A: for any string 𝑠, we have ⟦𝐴⟧𝑘(𝑠) = A. Thus
we are guaranteed to have

⟦x⟧(⟦𝐴⟧1(𝑠)) = A = ⟦"A"⟧(⟦𝐴⟧1(𝑠))

(We may already have this for 0 as well.) Finally, running the remainder of the
program y = tail(x) on the input A results in the output (A, ()). And running the
empty program on this (as a program from (x, y) to y) results in ().

So we see that for any input, the program halts with the final result being the empty
string. □

7.2.10 Exercise
Give an example of a program that does not halt for any input, and use the defi-
nition of the denotation function for programs to prove this.

7.2.11 Exercise
For any string 𝑠, there is some program 𝐴 with no inputs such that ⟦𝐴⟧ = 𝑠.

It will sometimes be useful to stick different programs together. As long as the
output variables of the first program line up with the input variables of the second,
the result is the same as composing the two functions that the programs denote.

7.2.12 Exercise
Let 𝐴 ∈ Py(�̄� → ̄𝑦) and 𝐵 ∈ Py(̄𝑦 → ̄𝑧) be programs. Then, for any sequence
of strings 𝑠 (the same length as �̄�),

⟦𝐴 ⊕ 𝐵⟧(̄𝑠) = ⟦𝐵⟧(⟦𝐴⟧(̄𝑠))

Hint. Use induction on the program 𝐴.

7.3 The Church-Turing Thesis

If we want to show that a question is decidable, we can write a program to answer
it. But how would we show that a question is undecidable? To do this, we wouldn’t

298 CHAPTER 7. THE UNDECIDABLE

just need to show that no program in our little language Py answers the question—
we’d need to show that no program in any reasonable programming language can
answer it. If a question is undecidable, then there isn’t any systematic algorithm for
solving it at all.

Alonzo Church and Alan Turing each hypothesized that there are universal pro-
gramming languages: languages which are expressive enough to describe every
systematic algorithm. In fact, they didn’t just hypothesize that such languages ex-
ist: they proposed some specific candidates. (In Church’s case, these consisted of
a small family of operations on functions of natural numbers. In Turing’s case, the
“language” consisted of Turing Machines—hypothetical devices for reading and
printing on a long tape.) These proposals amounted to giving a formal analysis of
the intuitive concept of a decidable question. You might doubt whether such an
analysis could succeed. (Surely any conceptual analysis like this would have coun-
terexamples!) But in fact, we have very strong evidence that Church and Turing’s
proposal is right.

The key philosophical claim is called the Church-Turing Thesis. The first bit of
evidence for it is packed right into its name. Church’s and Turing’s theses look dif-
ferent: they are apparently different analyses of the concept of a decidable question.
But they turned out to be equivalent to one another. That is, any question which is
decidable using a Turing Machine is also decidable using Church’s functions, and
vice versa.

Today we have hundreds more examples—formal languages like C++ or Python
or Haskell and so on: these also turn out to be equivalent to Turing and Church’s
languages. This also means that we get a little bit more empirical evidence for
the truth of the Church-Turing Thesis every time a programmer takes a precisely
described algorithm and implements it in their favorite programming language. The
Church-Turing Thesis is thus a hypothesis which is extraordinarily well-confirmed
by the practice of modern programming.

(Besides this empirical evidence, there are also some very strong philosophical ar-
guments for the Church-Turing Thesis. CITE Smith, Kripke. We have some clear
and precise sufficient conditions for a question to be effectively decidable: it’s
enough to show that we can write a program, for example, in our little language
Py. There are also interesting arguments for some precise necessary conditions
on decidability. But it turns out that we can prove that these sufficient conditions
and these necessary conditions are equivalent! So this argument would show that
Py-decidability is a necessary and sufficient condition for decidability, just as the
Church-Turing Thesis says. TODO: explain this a bit.)

7.3. THE CHURCH-TURING THESIS 299

Even so, it’s worth remembering that it is a philosophical thesis—an extraordinarily
successful philosphical thesis, but not officially a theorem. We can prove lots of
theorems about various kinds of formal languages. But the Church-Turing Thesis
is about the relationship between these formal languages and the intuitive notion of
a decidable question.

In particular, our little language Py is equivalent to each of these other programming
languages: a function is Py-computable if and only if it is computable using a Turing
Machine, if and only if it is computable using Church’s functions, if and only if it can
be computed by a program in C++ or any other standard programming language.
So if any of these languages is a universal programming language, so is Py. So
according to the Church-Turing Thesis, whatever can be done in any systematic
way—by any algorithm at all—can also be done using humble Py.

7.3.1 The Church-Turing Thesis
(a) A partial function 𝑓 ∶ 𝕊 → 𝕊 is effectively computable iff 𝑓 is Py-

computable.

(b) A set 𝑋 ⊆ 𝕊 is effectively decidable iff 𝑋 is Py-decidable.

In what follows, we will freely appeal to the Church-Turing Thesis (though it’s
generally a good idea to be clear about when exactly we’re relying on it). This is
extremely useful in two ways.

First, this lets us deduce the existence of programs, even without formally writing
them out. In order to show that a question is decidable, it’s enough to informally
give some reasonably careful description of a systematic procedure for answering
it. But even once we’ve done this much, transforming an informal description of
an algorithm into a formal program can still be pretty tricky. (That’s what profes-
sional programmers are for.) Given the Church-Turing Thesis, we can deduce the
existence of a program from the existence of an algorithm, even when we haven’t
worked out exactly how to write that program. We’ll do this in what follows: rather
than writing out fully detailed programs in our little language, we can just outline
how a program ought to work, and posit that some program does in fact work that
way, appealing to the Church-Turing Thesis.5

Second, this lets us prove results about undecidability. We can mathematically
prove that every Py-decidable set has certain properties. Then, using the Church-
Turing Thesis, we can conclude that every decidable set has those properties as well,
or to put that the other way around, any set without those properties is undecidable.

5Peter Smith CITE calls these “labor-saving” uses of the Church-Turing Thesis.

300 CHAPTER 7. THE UNDECIDABLE

7.3.2 Exercise
Given the Church-Turing Thesis, prove that there are uncountably many effec-
tively undecidable sets of strings.

7.4 The Universal Program

Programs operate on strings: they take strings as input, and spit out strings as output.
But a program also is a string of symbols itself. This means we can use programs
themselves as the input or output for other programs. Programs that manipulate pro-
grams might sound recherché, but it’s actually very common and practical. When
we write a program in Python, what we are doing is typing in a certain string of
symbols. When we then want to run that program, we are providing this string as
an argument to a Python interpreter—which is some other program. Somebody
wrote that program, too, in some programming language. In fact, the interpreter
might be written in Python itself!

Even our little language Py can do this. We can write a “Py-interpreter” in Py. This
is a program run(program, inputValue) with two input variables. The first input
should be a Py-program 𝐴, and the second input is an input value 𝑠 to provide to
𝐴. Then the final result of run is the same as the final result of running 𝐴 with the
input 𝑠. At least, it has this result if 𝐴 has any final result. It could be that 𝐴 crashes
or goes into an infinite loop. In that case, the interpreter will also just crash or run
forever. In short, for any program 𝐴 and string 𝑠,

⟦run⟧(𝐴, 𝑠) = ⟦𝐴⟧(𝑠)

Basically, what we’re doing is precisely describing the denotation function for Py,
within Py! This is very close to what Tarski’s Theorem showed we couldn’t do, for
sufficiently strong theories: we can represent the semantics of Py within Py. A key
difference is that Py programs (unlike first-order sentences) can crash. We’ll come
back to this point in Section 7.5 and Section 7.6.

First, let’s introduce some tools which are analogous to what we did in Chapter 6.
Officially, our Py-programs only have one “data type”: strings. But there are natu-
ral ways of using strings to represent other things—like numbers, or sequences of
strings.

7.4.1 Exercise
In Section 6.4we defined a string representation function for sequences of strings.

7.4. THE UNIVERSAL PROGRAM 301

Show that the following functions are computable:

(a) The function that takes the string representation of a non-empty sequence
of strings to its first element.

(b) The function that takes a the string representation for a sequence of strings
𝑠, and a string 𝑡, and returns True if 𝑡 is an element of the sequence 𝑠, and
otherwise returns False.

For the universal program, we’ll need string representations for one other important
kind of thing: assignment functions. There are many ways to do this, but here’s
one. We have already discussed a way of representing a sequence of strings using a
single string in Section 6.4. We can represent an assignment function as a sequence
of strings like this one:

(x:hello, result:, s:ABC)

This represents the assignment function

⎡
⎢
⎢
⎣

x ↦ hello
result ↦ the empty string
s ↦ ABC

⎤
⎥
⎥
⎦

Each element of the sequence joins up a variable with its value string, separated
by the symbol :. (For this to work out right, it’s important that we have stipulated
that the symbol : can’t ever show up within a variable name.) Then we can use the
string representation function for sequences to represent a key-value sequence like
this as a single string.

(We’ll only ever need to worry about assignment functions that are defined for just
finitely many variables—which is a good thing, because there is no way to represent
arbitrary infinite assignment functions using finite strings. There are too many of
them.)

7.4.2 Exercise
The following functions are computable, with respect to the string representation
function defined above.

(a) The function that takes a string representation of an assignment function
𝑔 and a variable 𝑥 to its value 𝑔𝑥. That is, this function takes the string
representation for a sequence of strings 𝑠, and a “key” string 𝑘 which does
not include the symbol :, and returns a string 𝑣 such that 𝑘:𝑣 is an element
of the sequence 𝑠, if there is any such string 𝑣.

302 CHAPTER 7. THE UNDECIDABLE

(b) The function that takes an assignment function 𝑔, a variable 𝑥, and a string
𝑠, to the new assignment 𝑔[𝑥 ↦ 𝑠], which modifies 𝑔 by setting the value
of 𝑥 to 𝑠.

7.4.3 Lemma
The denotation function takes a pair of a program 𝐴 and an assignment 𝑔 and
returns the denotation ⟦𝐴⟧𝑔 (when this is defined). The denotation function is Py-
computable.

Proof Sketch
We won’t write out a full program for this, but we will informally describe an al-
gorithm for doing this. By the Church-Turing Thesis, this algorithm can be imple-
mented by some program.

The first part of this project is called parsing. We need to take a program (or a
term), and split it up into its meaningful parts. We can write a bunch of small
programs to handle basic parsing tasks. Here’s our to-do list. (We won’t actually
do all of this: the goal here is just to make it apparent that the interpretation function
is computable, not to actually write a complete parser and interpreter. But if you
have the time and interest, it’s fun to work out some of these details in front of a
computer.)

1. Write a program that takes a program as input, and returns empty if it is the
empty program, let if it begins with a let statement, or while if it begins
with a while loop.

2. Write three programs that each take as their input a program that begins with
a let statement, and return (a) the variable on the left side of the equals sign,
(b) the term on the right side of the equals sign, and (c) the rest of the program
after the let statement.

3. Write four programs that take a program beginning with a while loop, of the
form

while 𝑎 != 𝑏 :
𝐴

𝐵

and return (a) the first term 𝑎, (b) the second term 𝑏, (c) the inner block 𝐴,
and (d) 𝐵 the remaining lines of the program after the while loop.

(One slightly tricky part here is figuring out where the inner block ends. As
we noted earlier, in Python this depends on the indentation.)

7.4. THE UNIVERSAL PROGRAM 303

4. (a) Write a program that takes a Py-term as input and identifies whether it
is a variable, a constant (either the constant "" for the empty string, or
else one of the constants like "A" for a one-symbol string) or a term of
the form head(𝑡), tail(𝑡), (𝑡1 + 𝑡2).

(b) For head and tail terms we should also write programs that return the
inner term 𝑡, and in in the case of +we should write programs that return
each of the inner terms 𝑡1 and 𝑡2.

(c) For constant terms, we should also write a program that tells us which
string the constant stands for. (In most cases, this just means stripping
off the outer quotation marks, but remember that there are a few special
cases.)

The components we have described so far just analyze the syntax of programs. To
calculate what a program does, we’ll need to keep track of an assignment function,
and work out how each part of a program ends up modifying it. For this purpose
we’ll use the programs from Exercise 7.4.2 that manipulate assignment functions:
we have a program getValue for looking up the value of a variable in an assign-
ment, and a program updateAssignment for updating the value of a variable in an
assignment.

We can build our interpreter by putting all these components together. There will
be two parts: a term-evaluator, and a program-interpreter.

The term-evaluator takes an assignment and a term and returns the string that the
term denotes (with respect to that assignment). We start by figuring out which
form the term has. If it’s a variable, then we look up the value of the variable in our
assignment (using function 6 above). If it’s one of the constants like "", "A", or quo,
then we return the corresponding string—either the empty string, or a one-symbol
string.

The other cases—terms built from head, tail, or +, are a little trickier, because
these terms include other terms. The most natural way to handle this would be with
a recursive program that can call itself (see Section 7.5). Since recursive program-
ming isn’t a part of basic Py, we need to be a little devious. Here’s the trick. We can
easily evaluate a term if it’s simple enough—if it doesn’t nest + or head or tail. But
we can always break down a complicated term into simple terms, by introducing
extra let statements. In order to evaluate a complex expression like "A" + head(x),
we can break it into two steps: first, set an intermediate variable temp to the value
of head(x), and then evaluate "A" + temp instead.

So the idea is that, before we try to interpret a program, we can start by simplifying

304 CHAPTER 7. THE UNDECIDABLE

its terms. Say we have a program that begins with this statement:
x = "A" + head(y + z)

Then we can break this up into simpler let statements, like this:
temp1 = "A"
temp2 = y + z
temp3 = head(temp2)
x = temp1 + temp3

In this simplified program, we never embed any term other than variables inside
more complex terms.

Say a term is simple iff it has no subterms other than variables. That is to say, a
simple term is either (a) a variable, (b) a constant, (c) of the form head(𝑥), tail(𝑥),
or (𝑥 + 𝑦) for some variables 𝑥 or 𝑦.

Say a program is simple iff all of the terms that appear in its first line are simple (or
else it is the empty program). That is, a simple program is either empty, or else of
the form

𝑥 = 𝑡
𝐴

for a simple term 𝑡, or else of the form

while 𝑡_1 != 𝑡_2 :
𝐴

𝐵

for simple terms 𝑡1 and 𝑡2.

Then we can add these syntactic manipulations to our to-do list.

5. Write a program that takes a program as input, and returns True iff it is simple.

6. Write a program that takes a programwhich is not simple as input, and returns
an equivalent simpler program. For example, this will take a program of the
form

𝑥 = 𝑡_1 + 𝑡_2
𝐴

to a new program with this form:

7.4. THE UNIVERSAL PROGRAM 305

𝑦 = 𝑡_1
𝑧 = 𝑡_2
𝑥 = 𝑦 + 𝑧
𝐴

(where 𝑦 and 𝑧 are variables which are not already used in the original pro-
gram). This result might not be simple yet: 𝑡1 might still be another complex
term. But if we do this enough times, eventually the resulting program will
be simple. We’ll call this program simplify.

The simplify program is a reasonably straightforward bit of syntactic ma-
nipulation, though it would take some work to write out. (If you’re going to
try to write it yourself, one thing you’ll need to do first is write a program
that takes a program as input, and returns a “new” variable which is not used
in that program.)

Now we can just write our term-evaluator for simple terms, which is pretty straight-
forward, once we have the parsing and assignment-wrangling tools from our to-do
list.
def evaluateSimpleTerm(term, g):

kind = kindOfTerm(term)
if kind == "variable":

result = getValue(g, term)
elif kind == "constant":

result = getStringFromConstant(term)
elif kind == "head":

x = innerTermOfHead(term)
result = head(getValue(g, x))

elif kind == "tail":
x = innerTermOfTail(term)
result = tail(getValue(g, x))

elif kind == "join":
x = firstTermOfJoin(term)
y = secondTermOfJoin(term)
result = getValue(g, x) + getValue(g, y)

return result

Here’s how our program-interpreter will work. First, we’ll check if the program is
simple or not. If it isn’t simple, then our first job is to simplify it. After that we’ll
try again.

306 CHAPTER 7. THE UNDECIDABLE

Once we have a simple program, we’ll look at its first statement to decide what to
do. If it doesn’t have any first statement—the program is empty–then we’re already
done. If it’s a let statement 𝑥 = 𝑡, then first we use our term-interpreter to evaluate
the (simple) term 𝑡, and we use our “update an assignment” program to set the value
of 𝑥 to whatever value 𝑡 denotes.

Next, suppose it’s a while-statement, so the program has the form

while 𝑡_1 != 𝑡_2 :
𝐴

𝐵

Then we’ll start by evaluating the (simple) terms 𝑡1 and 𝑡2. If they have the same
value, then we’re done with the loop, so we just go on to run the rest of the program
𝐵. If they have different values, though, then we will add another copy of the
subprogram 𝐴 to the beginning of our program (including this while loop) and
keep going. That is, in this case we’ll run the program

𝐴
while 𝑡_1 != 𝑡_2 :

𝐴
𝐵

Let’s spell this out in more detail. The whole interpreter goes in one big while loop.
We’ll keep track of an assignment g as we go, and step through the statements we
need to evaluate one by one, updating g as we go.
def interpretProgram(program, g):

while program != "":
if simpleProgram(program) == "False":

program = simplify(program)
else:

kind = kindOfProgram(program)
if kind == "let":

variable = variableInLetStatement(program)
term = termInLetStatement(program)
value = evaluateSimpleTerm(term, g)
g = updateAssignment(g, variable, value)
program = remainderAfterLetStatement(program)

elif kind == "while":
a = firstTermInWhileStatement(statement)

7.5. THE HALTING PROBLEM 307

b = secondTermInWhileStatement(statement)
block = blockInWhileStatement(statement)
value1 = evaluateSimpleTerm(a, g)
value2 = evaluateSimpleTerm(b, g)
if value1 == value2:

program = block + program
else:

program = remainderAfterWhileStatement(program)
return g

And that about finishes it up, aside from the details we skipped over. So the deno-
tation function for Py-programs is computable. □

7.4.4 Exercise
The Py-interpretation function is the function that takes each pair of a program
𝐴(𝑥) and a string 𝑠 to the result ⟦𝐴⟧(𝑠), whenever this is defined, and which
is undefined otherwise. Use Lemma 7.4.3 to show that the Py-interpretation
function is Py-computable.

7.5 The Halting Problem

Recall that a program halts if and only if it has some well-defined value. A program
that halts is one that neither crashes with an error nor “hangs” in an infinite loop.
Here is perfectly sensible question: which programs halt? The Py-interpretation
function is a precisely defined partial function. The “halting problem” is the precise
question of which programs are in the domain of this function. For any particular
program 𝐴, either 𝐴 has some final value, or it doesn’t.

This is a practically important question. If you’ve been working through the ex-
ercises, by now you’ve probably accidentally written some programs that crash or
hang. It would be extremely useful to have a program-checking program: a program
that determines whether your program will go into a never-ending while loop, or
not.

Unfortunately, there is no such program. The question of which programs halt—
while it is a perfectly precise question with a correct answer—is effectively unde-
cidable. There is no systematic method for determining, in general, which programs
are going to eventually return a value.

308 CHAPTER 7. THE UNDECIDABLE

This fact is very closely connected to Tarski’s Theorem about the undefinability of
truth. (Remember that decidability and definability are very closely related: the
difference is that one uses a programming language, while the other uses a first-
order language.) The proof is also very similar.

Let’s introduce some notation to make the analogies more obvious. In Exer-
cise 7.2.11, you showed that for any string 𝑠 there is some program (with no inputs)
that just returns 𝑠. By analogy with the first-order language of strings, let’s call
this program ⟨𝑠⟩—the quotation of 𝑠. This program isn’t 𝑠 itself (which might not
be a program at all), but it denotes 𝑠. Let’s reiterate.

7.5.1 Proposition
For any string 𝑠,

⟦⟨𝑠⟩⟧ = 𝑠

In Exercise 7.2.12 we also considered how we could chain programs together. Let’s
introduce some more suggestive notation for this operation, which will make the
analogy with what we did with formulas more obvious. For programs 𝐴(�̄�) ∈
Py(�̄� → 𝑦) and 𝐵(𝑦) ∈ Py(𝑦 → 𝑧), let 𝐵(𝐴(�̄�)) be the joined-together program
𝐴(�̄�) ⊕ 𝐵(𝑦). Let’s restate what Exercise 7.2.12 tells us, in this notation.

7.5.2 Proposition
For programs 𝐴(�̄�) ∈ Py(�̄� → ̄𝑦) and 𝐵(̄𝑦) ∈ Py(̄𝑦 → ̄𝑧),

⟦𝐵(𝐴(�̄�))⟧(̄𝑠) = ⟦𝐵(𝑦)⟧(⟦𝐴(�̄�)⟧(̄𝑠))

Notice that this looks just like the Substitution Lemma for Terms—except now we
are talking about programs.

In particular, we can compose programs with quotation. So if ⟨𝑠⟩ is a program
that returns 𝑠 (with output variable 𝑥), we can then feed the result of this program
to another program 𝐴(𝑥), just by joining them together: the result is the program
⟨𝑠⟩ ⊕ 𝐴(𝑥), or, using the new notation we just introduced, 𝐴(⟨𝑠⟩). We’ll simplify
this to 𝐴⟨𝑠⟩ to avoid drowning in a sea of parentheses.

7.5.3 Exercise
For any program 𝐴(𝑥) and string 𝑠,

⟦𝐴⟨𝑠⟩⟧ = ⟦𝐴⟧(𝑠)

The next step is to write some programs to do basic syntactic manipulations. First,

7.5. THE HALTING PROBLEM 309

just as the quotation function was definable in the theory of strings, it is also com-
putable in Py. We can show this by writing a program.

7.5.4 Exercise
The function that takes each string 𝑠 to a quotation program ⟨𝑠⟩ (which returns
𝑠) is computable.

7.5.5 Exercise
The self-application or diagonalization function takes each program 𝐴(𝑥) ∈
Py(𝑥 → 𝑦) to the program 𝐴⟨𝐴(𝑥)⟩. Essentially, this is a program that feeds the
program 𝐴(𝑥) to itself. (Remember, this is just the same thing as ⟨𝐴(𝑥)⟩ ⊕ 𝐴(𝑥),
assuming 𝑥 is the output variable of the program ⟨𝐴(𝑥)⟩.) Using the previous ex-
ercise, show that this function is computable. That is, there is a programDiag(𝑥)
such that, for any program 𝐴(𝑥) ∈ Py(𝑥 → 𝑦),

⟦Diag⟧(𝐴(𝑥)) = 𝐴⟨𝐴(𝑥)⟩

Let’s be very clear about what this means. The program Diag(𝑦) is a syntax-
manipulating program. It takes a program as its input, and then it modifies that
program to produce another program as output. The new program simply adds a
bit to the beginning of the program which starts by assigning the program 𝐴(𝑥)’s
“source code” as the value of the input variable 𝑥. For example, suppose 𝐴(x) is
this very simple program:
x = x + x

Then the result of applying the “diagonalization” function to 𝐴(x) is this slightly
more complex program:
x = "x" + " " + "=" + " " + "x" + " " + "+" + " " + "x" + new
x = x + x

(Note in particular that while xwas a free “input” variable in 𝐴(x), the diagonalized
program 𝐴⟨𝐴(x)⟩ does not have any input variables.) If we run this program, here
is the result:
x = x + x
x = x + x

310 CHAPTER 7. THE UNDECIDABLE

7.5.6 Exercise (Kleene’s Fixed Point Theorem)
For any program 𝐹 (𝑥), there is a program 𝐺 such that

⟦𝐹 ⟧(𝐺) = ⟦𝐺⟧

That is, the result of running the program 𝐹 (𝑥) with the “fixed point” program
𝐺 as its input is the same as the result of running 𝐺 itself. Equivalently,

⟦𝐹 ⟨𝐺⟩⟧ = ⟦𝐺⟧

Hint. Refer back to the proof of Gödel’s Fixed Point Theorem (Exercise 6.9.9).

Notice in particular that if 𝐺 is a “fixed point” of 𝐹 (𝑥) in the sense of Kleene’s
Theorem, then 𝐺 halts iff 𝐹 (𝑥) halts for the input 𝐺.

7.5.7 Exercise
Write a program Flip(𝑥) which does not halt for the input True, and which halts
for any input besides True.

7.5.8 Exercise (Turing’s Theorem)
The set of programs that halt is undecidable (given the Church-Turing thesis).

Hint. Suppose that there is a program Halt(𝑥) such that

⟦Halt⟧(𝐴) =
{

True if 𝐴 halts
False otherwise

Then you can use Kleene’s Theorem and the program Flip(x) to derive a con-
tradiction, using similar reasoning to the proof of Tarski’s Theorem or the Liar
Paradox.

We used Kleene’s Fixed Point Theorem as a lemma on the way to proving Turing’s
Theorem. But this is also an important result in its own right, because it provides a
foundation for recursive programming. It’s often handy to write programs that call
themselves. For example, here’s another way of writing the reverse program:
def reverse(x):

if x == "":
result = ""

else:
reversedTail = reverse(tail(x))
result = reversedTail + head(x)

7.5. THE HALTING PROBLEM 311

return result

This program calls the reverse program itself. Since each time reverse calls itself,
the string passed along as the value of s gets shorter, eventually these recursive self-
calls will bottom out at the empty string. So even though the program calls itself, it
will always end up halting. This is very similar to the kind of recursive definitions
we’ve given for functions on numbers and strings.

Self-calling programs like this one are not an official part of Py. But Kleene’s theo-
rem shows us how to unpack programs like this in Py, using a fixed point. First, we
need to state a slightly more general version of Kleene’s Theorem, which allows us
to also pass a “side argument”:

7.5.9 Proposition (Kleene’s Fixed Point Theorem Version 2)
Let 𝐹 (𝑥, 𝑦) be a program. Then there is a program 𝐴(𝑦) such that, for any string 𝑠,

⟦𝐴⟧(𝑠) = ⟦𝐹 ⟧(𝐴(𝑦), 𝑠)

This can be proved in basically the same way as Exercise 7.5.6

Now, suppose we want to write the recursive program reverse. Let’s start by mod-
ifying it a bit. At the point where we wanted to call the reverse program itself,
instead we can run some arbitrary program which is provided as an extra argument.
def protoReverse(program, x):

if x == "":
result = ""

else:
reversedTail = run(program, tail(x))
result = reversedTail + head(x)

return result

(Here run is the Universal Program from Exercise 7.4.4.) Then Proposition 7.5.9
tells us that there is a program 𝑅(x) which has the same effect as running the
protoReverse program with 𝑅(x) itself as the first argument.

⟦𝑅⟧(𝑠) = ⟦protoReverse⟧(𝑅(x), 𝑠)

In other words, 𝑅(x) is equivalent to a program that calls 𝑅(x) itself! So the sim-
ple Py-program 𝑅(x) has the same behavior as the recursive program reverse. In
general, we can construct a recursive program as a fixed point of a “higher-order”
program like protoReverse. (For this reason, Kleene’s Fixed Point Theorem is also
known as Kleene’s Recursion Theorem.)

312 CHAPTER 7. THE UNDECIDABLE

7.6 Semi-Decidable and Effectively Enumerable Sets

Here is a point thatmight be a little confusing. The denotation function for programs
is computable; but the question of whether a program halts is undecidable. Why
can’t we use the Universal Program run to decide whether a program halts?

We can clarify the relationship between these two facts by introducing another no-
tion: this is something which is less demanding than decidability, but still goes a
long way toward it. A semi-decidable set is one that can be “decided in one direc-
tion”. What that means is that there is an algorithm such that, for any given 𝑑, if
𝑑 is in the set, then the algorithm will eventually tell you so—and the algorithm
won’t ever tell you something is in the set which really isn’t—but if 𝑑 is not in the
set, then there is no guarantee that the algorithm will tell you anything at all. The
algorithm will tell you the good things are good, and it won’t say any bad things
are good, but the bad things might just end up crashing or hanging your program
instead.

7.6.1 Definition
A semi-decision procedure for a set 𝑋 is a program 𝐴 such that, for each string
𝑠 ∈ 𝕊,

⟦𝐴⟧(𝑠) = True iff 𝑠 ∈ 𝑋
But note that if 𝑠 is not in 𝑋, ⟦𝐴⟧(𝑠) isn’t guaranteed to return any value at all: it
is just required not to return the value True. A set 𝑋 is semi-decidable iff there is
some semi-decision procedure for 𝑋.

It follows directly from the definition that every decidable set is semi-decidable.
But as the next exercise shows, the converse does not hold.

7.6.2 Exercise
The set of programs that halt is semi-decidable. Thus there is a set which is
semi-decidable, but not decidable.

7.6.3 Exercise
Uncountably many sets of strings are not even semi-decidable.

7.6.4 Exercise (Bounded Search)
Let 𝐴(𝑥, 𝑦) be a program which halts for every input. Use this to write another
program 𝐵(𝑦, bound) such that, for any strings 𝑡 and 𝑢,

7.6. SEMI-DECIDABLE AND EFFECTIVELY ENUMERABLE SETS 313

⟦𝐵⟧(𝑡, 𝑢) = True if there is some string 𝑠 which is no longer than 𝑢,
such that ⟦𝐴⟧(𝑠, 𝑡) = True.

⟦𝐵⟧(𝑡, 𝑢) = False otherwise.

Hint. You can help yourself to a variable called alphabet whose value is a long
string containing every symbol in the standard alphabet. Actually writing this
out would require you to write a very long first line of your program:

alphabet = "A" + "B" + "C" + …

One elegant strategy for writing this program uses a recursive self-calling pro-
gram. (We know that recursive self-calls can be eliminated in principle using
Kleene’s Theorem.)

7.6.5 Exercise (Unbounded Search)
Let 𝐴(𝑥, 𝑦) be a program which halts for every input. Use Exercise 7.6.4 to write
another program 𝐶(𝑦) such that, for any string 𝑡,

⟦𝐶⟧(𝑡) = True iff there is some string 𝑠 (of any length) such that
⟦𝐴⟧(𝑠, 𝑡) = True.

If there is no such string, 𝐶 does not have to return any value at all.

7.6.6 Exercise
Let 𝑋 ⊆ 𝕊 × 𝕊 be a set of pairs of strings. Let

𝑋∃ = {𝑡 ∈ 𝕊 ∣ there is some 𝑠 ∈ 𝕊 such that (𝑠, 𝑡) ∈ 𝑋}

If 𝑋 is decidable, then 𝑋∃ is semi-decidable.

Hint. Use Exercise 7.6.5.

Semi-decidability is closely linked to another idea. Some sets can be listed. The
idea is that we can write a program that spits out each element of 𝑋 one by one.
One way to make this idea precise is with computable functions from the natural
numbers. For a “listable” set 𝑋, we can take any number 𝑛 and spit out an element
of𝑋, such that every element of 𝑋 shows up for some number 𝑛. This is very similar
to the idea of a countable set—which is a set which is the range of some function
from natural numbers. But nowwe’re not just interested in arbitary functions: what
we want is a “counting function” which is a nice computable function.

If you can decide which things are in a set, then you can list it. If 𝑋 is decidable,

314 CHAPTER 7. THE UNDECIDABLE

then one way to list its elements is to go through every string one by one in some
fixed order, and for each string check whether it’s in 𝑋. If it is, then spit it out, and
if it isn’t, then don’t spit anything out, and go on to the next string.

But just because you can list a set doesn’t guarantee that you can determine whether
any particular thing is in it. You might try just going through the list looking for the
thing you want. This half works. If the thing you want is in the list, then by going
through the list one by one, eventually you’ll find it, and you can return True. But if
the thing you want isn’t in the list, then you’ll never find it. But at any point in your
search you’ll only have looked at finitely many things, so there’s no point in your
search where you know you never will find it, later on. So every effectively enumer-
able set is semi-decidable. But this doesn’t mean that every effectively enumerable
set is decidable.

We can make these ideas a bit more official.

7.6.7 Definition
A set of strings 𝑋 ⊆ 𝕊 is effectively enumerable iff 𝑋 is the range of some com-
putable total function.

7.6.8 Theorem
If 𝑋 is effectively enumerable, then 𝑋 is semi-decidable.

Proof
If 𝑋 is effectively enumerable, then 𝑋 is the range of some computable total func-
tion 𝑓 . That is to say,

𝑋 = {𝑡 ∈ 𝕊 ∣ there is some 𝑠 ∈ 𝕊 such that 𝑓𝑠 = 𝑡}

But also, if 𝑓 is a computable total function, then the set 𝑌 = {(𝑠, 𝑡) ∈ 𝕊 ∣ 𝑓𝑠 = 𝑡} is
decidable—just calculate 𝑓𝑠, and then check whether the result is the same string as
𝑡. Since 𝑋 = 𝑌 ∃, using Exercise 7.6.6 we can conclude that 𝑋 is semi-decidable.□

We can also show that this works the other way around: every semi-decidable set is
effectively enumerable. But this direction takes significantly more work to officially
prove.

7.6.9 Theorem
If 𝑋 is semi-decidable, then 𝑋 is effectively enumerable.

Proof Sketch
Suppose that 𝑋 is semi-decidable: this means we have some program that returns

7.7. DECIDABILITY AND LOGIC 315

True just for inputs that are in 𝑋. We’ll use this to show that 𝑋 is effectively
enumerable.

Here’s the basic idea. We can go through strings one by one in some fixed order.
The obvious thing to try is to check each string, and print it out if we get True.
The problem with this approach is that the semi-decision program might go into
an infinite loop. The first time this happens, the whole program will stop working,
which means we’ll never get to strings that come later in the list. So we need to
make sure we never allow the semi-decision program to go on forever.

Here’s how we can do this. We can run a modified program, which replaces each
while loop with a for loop that only runs 𝑛 times, for some number 𝑛, and returns
Fail if the loop-ending condition still hasn’t been met at that point. Call this the
𝑛-bounded variant of a program. If a program halts, then each of its while loops
only goes through finitely many steps, which means there is some number 𝑛 such
that the 𝑛-bounded program succeeds.

So here’s what we can do. We can go through the pairs (𝑠, 𝑛) of a string and a
number, one by one. For each pair, we’ll try to run the 𝑛-bounded semi-decision
program with input 𝑠. If we get True, then we print out s. If we get False or Fail
then we don’t print out s (yet) and we go on to the next pair. Because we are using
bounded programs, the computation we do for each pair can only take finitely many
steps. So we’ll eventually reach every pair, and so eventually every string that the
semi-decision program returns True for will get printed out. □

7.6.10 Exercise
Suppose that 𝑋 is a decidable set, and 𝑌 is a subset of 𝑋. Suppose furthermore
that 𝑌 and 𝑋 − 𝑌 (the set of strings in 𝑋 but not in 𝑌) are both semi-decidable.
Then 𝑌 is decidable.

TODO. This exercise is probably too hard. I would like to refactor
this section again.

7.7 Decidability and Logic

Now that we have come to grips with the fundamental ideas of computability, we
can apply these ideas to some important questions in logic.

Here’s a common problem. You have some premises that you take to be true, and
you want to know whether a certain conclusion logically follows from them. In

316 CHAPTER 7. THE UNDECIDABLE

other words, given some axioms, we want to know whether a certain sentence is a
theorem. This is a task philosophers face all the time, as they are trying to figure
out how certain philosophical conclusions fit together with various philosophical
starting points. It’s an even larger part of what mathematicians do. The question of
which conclusions follow from which premises is at least somewhat important in
essentially every field of inquiry, and it is often very tricky to answer.

Part of Leibniz’s distinctive rationalist vision was that all fields of inquiry could be
reduced to the problem of determining what follows from what. He wrote:

The only way to rectify our reasonings is to make them as tangible as
those of the Mathematicians, so that we can find our error at a glance,
and when there are disputes among persons, we can simply say: Let
us calculate, without further ado, to see who is right. [CITE “Art of
Discovery” 1685, trans. Wiener.]

Leibniz imagined that “reasoning in morality, physics, medicine, or metaphysics”
could be reduced to the problem of determining what logically follows from what.
And he thought that solving the problem of what logically follows from what was
a matter of mere calculation—and so, in principle, every question could be system-
atically answered.

In 1928, the mathematicians David Hilbert gave a challenge to the world. Can you
give a general, systematic procedure that can take any statement in first-order logic,
and determine whether or not it is a logical truth? If you can do this, you can
also solve the more general problem: given any finite set of premises 𝑋 which are
formalized in first-order logic, and given any other first-order sentence 𝐴, determine
whether 𝐴 is a logical consequence of 𝑋. If we could do this, then we would have a
general purpose tool for determining which arguments are valid, as long as we know
how to formalize those arguments in first-order logic. This would be extremely
handy! This problem is called Hilbert’s Entscheidungsproblem (which is German
for “decision problem”).

Unfortunately, Hilbert’s challenge can’t be met. Like the problem of determining
which programs have infinite loops, the problem of deciding which arguments are
logically valid in first-order logic is effectively undecidable. This fact is called
Church’s Theorem—and we will prove it now.

The important idea is that we can link up the key concept of this chapter—
computability—with the two key concepts of the last chapter—definability and
representability. What we have to do is connect programs to formulas. For
every program, there is a corresponding formula in the first-order language of
strings that precisely describes what that program does. Once we’ve made these

7.7. DECIDABILITY AND LOGIC 317

connections, the exciting results will basically follow as simple consequences of
Tarski’s Theorem from Chapter 6.

The basic idea is very similar to the idea of the Universal Program. We will ex-
plicitly represent the state of a program—that is, an assignment function—using a
string. Thenwewill use formulas to describe what each kind of statement in our pro-
gramming language does. That is, for each step of a program, we can describe the
relationship between its “input” and “output” assignments using first-order logic.

We have already discussed how to represent an assignment function as a sequence
of strings in Section 7.4, and also how to represent a sequence of strings with a
single string in Section 6.4. One thing we’ll need to do is come up with expressions
in first-order logic that do the same work as some of the programs we discussed
earlier.

7.7.1 Exercise
Recall from Section 7.4 that we can represent a (finite) assignment function as
a sequence of key-value strings. Thus we can represent an assignment using a
single string, using the idea in Section 6.4 for representing sequences of strings.
Show that the following functions are definable in 𝕊, with respect to this repre-
sentation:

(a) The function that takes each assignment function 𝑔 and variable 𝑥 to its
value 𝑔𝑥.

(b) The function that takes each assignment function 𝑔, variable 𝑥, and string
𝑠, to the updated assignment function 𝑔[𝑥 ↦ 𝑠].

Hint. Back in Section 6.4 we showed that certain sequence operations are defin-
able in 𝕊. It will be helpful to use some of those facts.

7.7.2 Exercise
Show that for each Py-term 𝑡, the corresponding function that takes each assign-
ment function 𝑔 to its denotation ⟦𝑡⟧𝑔 is definable in 𝕊.

By the Church-Turing Thesis, we can assume that every computable function is
the extension of some Py-program. So to show that every computable function is
definable in𝕊, we just have to show that everyPy-program has a definable extension.
And we can show this by induction on the structure of programs. That is, we can
prove that every computable function is definable in 𝕊 by showing three things:

1. The denotation of the empty program is definable.

318 CHAPTER 7. THE UNDECIDABLE

2. If the denotation of 𝐴 is definable, so is the denotation of

𝑡1 = 𝑡2
𝐴

3. If the denotations of 𝐴 and 𝐵 are definable, so is the denotation of

while 𝑡1 != 𝑡2:
𝐴

𝐵

The trickiest part is step 3. Recall fromDefinition 7.2.7 that definition of the denota-
tion of a while block uses the idea of a finite loop sequence. For terms 𝑡1 and 𝑡2 and
a program 𝐴, (𝑔0, …, 𝑔𝑛) is a finite loop sequence iff the following three conditions
hold:

𝑔𝑖+1 = ⟦𝐴⟧𝑔𝑖 for each 𝑖 < 𝑛
⟦𝑡1⟧𝑔𝑖 ≠ ⟦𝑡2⟧𝑔𝑖 for each 𝑖 < 𝑛
⟦𝑡1⟧𝑔𝑛 = ⟦𝑡2⟧𝑔𝑛

The denotation ⟦𝐴⟧𝑔 is the last element of a finite loop sequencewhose first element
is 𝑔, if there is one.

7.7.3 Exercise
Let 𝑡1 and 𝑡2 be Py-terms, and let 𝐴 and 𝐵 be programs. Suppose the denotations
of 𝐴 and 𝐵 (that is, the functions [𝑔 ↦ ⟦𝐴⟧𝑔] and [𝑔 ↦ ⟦𝐵⟧𝑔]) are each
definable in 𝕊.

(a) The set of finite loop sequences for 𝑡1, 𝑡2, and 𝐴 is definable in 𝕊.

(b) The function that takes each assignment 𝑔 to the denotation

⟦

while 𝑡1 != 𝑡2:
𝐴

𝐵 ⟧
𝑔

is definable in 𝕊.

7.7.4 Exercise (The Definability Theorem)
Given the Church-Turing Thesis, every computable function is definable in the
standard string structure 𝕊.

7.7. DECIDABILITY AND LOGIC 319

7.7.5 Exercise
Use Exercise 7.7.4 to show that every decidable set of strings is definable in the
string structure 𝕊.

This fact has several important applications. For instance, we can use it to show
the definability of certain functions we discussed in Chapter 5—like substitution,
the labeling function, and translation functions. To show they’re definable, we just
need to show that they’re computable. And to show this, we just need to describe
some systematic algorithm for computing them. For this, their standard recursive
definitions are pretty much already enough.

We can also combine the Definability Theorem with what we showed in the last
chapter about undefinable sets, in order to derive another important result about
undecidability.

7.7.6 Exercise
The set of true first-order sentences in the string structure, Th𝕊, is undecidable.

7.7.7 Exercise
Show that the set of programs that halt is definable in the structure 𝕊. So there
are sets of strings which are definable but undecidable.

In fact, we can strengthen these results. We don’t really need the whole theory of 𝕊
to describe computable functions. Just a pretty small simple piece of this theory is
enough.

Let’s start by recalling some definitions from Section 6.9. Each string 𝑠 ∈ 𝕊 has
a quotation term, which is a term ⟨𝑠⟩ in the language of strings. If 𝑓 is a partial
function from 𝕊 to 𝕊, then a theory 𝑇 represents 𝑓 iff there is a formula 𝐹 (𝑥, 𝑦)
such that

𝑇 ⊨ ∀x ∃!y 𝐹(x,y)

𝑇 ⊨ 𝐹(⟨𝑠⟩,⟨𝑓(𝑠)⟩) for each 𝑠 in the domain of 𝑓

Intuitively, this means that the theory 𝑇 “knows”, first, that 𝐹 is functional, and
second, that 𝐹 relates each input string 𝑠 to the correct output string 𝑓(𝑠).

The next thing to remember is the idea of a sufficiently strong theory (Section 6.11):
this is a theory that interprets the minimal theory of strings 𝖲. (We will focus here
on theories that are already expressed in the language of strings, or an expansion
of that language, in order to avoid complications involving definitional extensions.)

320 CHAPTER 7. THE UNDECIDABLE

Sufficiently strong theories can be quite simple—for example, 𝖲 itself, and the min-
imal theory of arithmetic 𝖰 are each finitely axiomatizable theories that are suffi-
ciently strong. These are much simpler than the full theory of the string structure
Th𝕊. Even so, sufficiently strong theories are powerful enough to describe lots of
things. Anything which is definable in the string structure 𝕊 using a syntactically
simple enough expression is also representable in 𝖲, and thus in a sufficiently strong
theory. To use the technical term introduced in Section 6.10: anything that is Σ1-
definable in 𝕊 is representable in 𝖲. A Σ1-formula consists of a formula that uses
only bounded quantifiers— quantifiers that are restricted to strings with a certain
maximum length—plus just one unbounded existential quantifier out front.

We can use this fact to prove a stronger generalization of the Definability Theorem:

7.7.8 Representability Theorem, version 1
Any sufficiently strong theory represents every computable function.

To prove the Definability Theorem, we showed that lots of different functions are
definable in 𝕊—functions that pick out elements of sequences, update assignments,
and so on. We can prove the Representability Theorem by working our way back
through this proof, and checking that at each step we can get by using syntactically
simple enough expressions—that is, just Σ1 formulas. We won’t work through this
in detail. (If you have worked through the “starred” section Section 6.10 and the
proof of the Definability Theorem, then you have everything you need to do it your-
self.) But let’s think about an intuitive explanation for why this really should work
out.

The basic idea is that, even though the theory 𝖲 doesn’t include all the truths about
strings, it does include all of the “basic” truths, about what any particular string is
like internally. For example, for any particular string 𝑠, the theory 𝖲 knows what
substrings 𝑠 has, or how long it is, or whether it contains an A somewhere before a
B, and so on. Furthermore, it turns out these kinds of “basic” truths about strings
are enough to pin down the behavior of computable functions. Suppose 𝐴 is a
program that returns some value ⟦𝐴⟧(𝑠) for an input sequence of strings 𝑠. Then it
turns out that the value of ⟦𝐴⟧(𝑠) is determined by what one specific string is like.
There is a string that represents the whole finite sequence of “states” that 𝐴 steps
through (that is, sequences of strings, representing the values of variables), starting
with 𝑠. Call this sequence of assignments an 𝐴-computation sequence. (This is an
extension of the idea of a finite loop sequence that we considered earlier.) We can
verify that a string has all the right features to represent an 𝐴-computation sequence
just by examining its internal structure—ignoring the rest of the infinite universe of

7.7. DECIDABILITY AND LOGIC 321

alternative strings. And as we noted, these “internal” facts about a specific string
are the sort of thing that the theory 𝖲 can verify all on its own. More specifically, we
can formalize the property of being an 𝐴-computation sequence using a bounded
formula—we don’t need to look at any strings longer than the string that represents
the computation sequence itself. Similarly we can formalize the property of being
the first or last element of such a sequence using another bounded formula. Then
to represent the relation ⟦𝐴⟧(𝑠) = 𝑠′, we can use a formula that says this:

There is some string that represents an 𝐴-computation sequence whose
first element is 𝑠, and whose last element is 𝑠′.

This has just one unbounded existential quantifier.

That is all we’ll say here about the proof of the Representability Theorem. From
here on, we will take the theorem to be established, and use it to show some other
important things.

Here’s one immediate application. Remember that in Chapter 6 we used the fact that
the minimal theory of strings 𝖲 represents syntax: that is, it represents the substitu-
tion function and the labeling function. We can now get these facts as corollaries
of the Representability Theorem. It is clear that these functions are effectively com-
putable. Indeed, the recursive definitions themselves already amount to an effective
method for calculating the results of substitution and labeling. Thus, by the Church-
Turing Thesis these functions are Py-computable, and thus by the Representability
Theorem they are representable in 𝖲.

7.7.9 Exercise (Representability Theorem, version 2)
Use the Representability Theorem (version 1) to show that, if 𝑋 is a decidable
subset of 𝕊 and 𝑇 is a sufficiently strong theory, then 𝑇 represents 𝑋.

Hint. Recall this definition: for 𝑇 to represent 𝑋 means that there is some for-
mula 𝐹 (𝑥) such that

for each string 𝑠 ∈ 𝑋, 𝑇 ⊨ 𝐹 ⟨𝑠⟩
for each string 𝑠 ∉ 𝑋, 𝑇 ⊨ ¬𝐹 ⟨𝑠⟩

Note also that if 𝑇 is sufficiently strong, then

𝑇 ⊨ ⟨True⟩ ≠ ⟨False⟩

7.7.10 Exercise (The Essential Undecidability Theorem)
No sufficiently strong theory is both consistent and decidable.

322 CHAPTER 7. THE UNDECIDABLE

Hint. Use Tarski’s Theorem.

7.7.11 Exercise (Church’s Theorem)
The set of first-order logical truths (in the language of strings) is undecidable.

Hint. Here are two useful facts to bear in mind. First, the theory 𝖲 is finitely
axiomatizable and sufficiently strong. Second, if 𝐴1, …, 𝐴𝑛 is some finite list of
sentences, then the function that takes each sentence 𝐵 to the sentence

(𝐴_1 & ⋯ & 𝐴_𝑛) → 𝐵

is computable.

Church’s Theorem shows that Hilbert’s general “decision problem” is impossible.
There is no general systematic way to decide which statements are logical conse-
quences of a given set of axioms.

The Essential Undecidability Theorem, which we used to prove Church’s Theorem,
is also going to be very important in Chapter 8, so take a bit of time to meditate on
what it says. Take any theory 𝑇 that is strong enough to describe some basic string
operations (or a bit of basic arithmetic) but not so strong that it includes logical
contradictions. Then there is no general systematic method, even in principle, to
determine what exactly 𝑇 says. To put it another way, there is no decidable theory
anywhere “in between” the minimal theory of strings (or if you prefer, the minimal
theory of arithmetic) and the inconsistent theory. In particular, the minimal theory
of strings itself is undecidable (it is a sufficiently strong consistent theory). But
furthermore, it is essentially undecidable, in the sense that you can’t consistently
add anything to it that would make it come out decidable again.

This amounts to a refutation of the strong form of Leibniz’s rationalist vision.
Even if all questions in “morality, physics, medicine, or metaphysics” can be
reduced to questions of logic, this would not make answering them a matter of
mere “calculation”—because questions of logic are effectively undecidable.

Chapter 8

The Unprovable

Thus they argued, and intended to go on, but the
Empress interrupted them: I have enough, said she, of
your chopped logic, and will hear no more of your
syllogisms; for it disorders my reason, and puts my
brain on the rack; your formal argumentations are
able to spoil all natural wit.

Margaret Cavendish, The Blazing World (1668)

So far we’ve been thinking about logic in terms of structures: 𝐴 is a logical con-
sequence of 𝑋 iff 𝐴 is true in every structure where each sentence in 𝑋 is true.
To put it another way, a logically valid argument is one with no counterexamples,
where a counterexample is a structure where the premises are true and the conclu-
sion is false. We’ll now look at a different approach to logic, which instead uses
the idea of a formal proof. A formal proof builds up a complicated argument by
chaining together very simple steps. The basic steps are chosen so that they are
very closely connected to the basic roles of our logical connectives. Because of
this, many people have thought that proofs are in some sense conceptually more
basic than structures.

One of the central facts about first-order logic is that these two different ways of
thinking about logic perfectly line up. An argument from premises 𝑋 to a conclu-
sion 𝐴 has a proof if and only if it has no counterexamples. (This is called Sound-
ness and Completeness.) This fact is important because it lets us go from facts
which are obvious about provability to corresponding facts about structures which
are less obvious, and vice versa. For instance, it will be obvious from the way we

323

324 CHAPTER 8. THE UNPROVABLE

build up proofs that no proof relies on infinitely many premises. From this we can
deduce the less obvious fact that no logical consequence essentially relies on in-
finitely many premises. (This is called the Compactness Theorem.) Similarly, we
can show that a certain argument is not logically valid by coming up with a specific
counterexample. From this we can deduce the less obvious fact that the argument
has no proof.

We can also combine provability with the other ideas we’ve been exploring. A
key fact about our proof system—and indeed, any reasonable system of proofs that
a finite being could use to establish results—is that the question of what counts
as a correct proof of a certain conclusion is effectively decidable. This basic fact,
together with the things we have already established about undecidability in Chap-
ter 7, has deep and important consequences. First, we can show that the set of
logical truths is effectively enumerable—basically, because proofs are the sort of
thing we can systematically list one by one. (This means, in light of Church’s The-
orem ((Exercise 7.7.11)), that the set of logical truths is another example of a set
that is semi-decidable, but not decidable.) More generally, consider any “reason-
ably simple” theory: a theory that consists of just the logical consequences of some
effectively decidable set of axioms. Any theory like this is also effectively enumer-
able. But this leads us directly to Gödel’s First Incompleteness Theorem: no theory
is “reasonably simple”, sufficiently strong, consistent, and complete. Notice in par-
ticular that the set of truths is sufficiently strong, consistent, and complete (in all
but the most impoverished languages); so it follows that the truth cannot be simple.
There is no hope, for example, for a rationalist project of writing down elegant ax-
ioms from which all truths can be systematically derived. (That is—systematically
derived by finite beings. Perhaps, as Leibniz believed, God can know some truths
by way of infinite proofs, which are not covered by this theorem.)

8.1 Proofs

A proof is an expression in a formal language: a string of symbols built up sys-
tematically from certain basic pieces using certain rules. In this respect, proofs are
just like terms, formulas, and programs. Just like we did with those other formal
languages, we will give a recursive definition of the structure of proofs, which will
specify some “basic” proof steps and some rules for putting them together. Since
the point of a formal proof is to make it very clear and easy to check that a con-
clusion follows from some premises, there shouldn’t be too many different proof
rules, and no particular rule should be too complicated. Even so, proofs are our
most complicated formal language so far: they are built up from formulas, which
are already a bit complicated, and there are multiple proof rules for each one of the

8.1. PROOFS 325

basic logical connectives we use to build up formulas (&, ¬, =, and ∀). So we’ll take
it slow.

There are many different formal proof systems for first-order logic, which make
different trade-offs. We’ll use what’s called a natural deduction system. The key
feature of natural deduction systems is that they let us make intermediate suppo-
sitions in our proofs—the kind of step that we express in our ordinary informal
proof using the word “suppose”. We do this when we use the technique of proof by
contradiction. Here’s a classic example—the reasoning of Russell’s Paradox:

Suppose 𝑥 is a set such that for any 𝑦, 𝑦 is an element of 𝑥 iff 𝑦 is not
an element of 𝑦. So, in particular, 𝑥 is an element of 𝑥 iff 𝑥 is not an
element of 𝑦. We can derive a contradiction from this claim. First,
suppose that 𝑥 is an element of 𝑥. In that case, by the claim, 𝑥 is not
an element of 𝑥. This is a contradiction, so it follows that 𝑥 is not an
element of 𝑥. But in that case the claim implies that 𝑥 is an element
of 𝑥. This is a contradiction again. So the claim must be false. This
shows that there is no set 𝑥 such that, for any 𝑦, 𝑦 is an element of 𝑥 iff
𝑦 is not an element of 𝑦.

In a natural deduction system, the formalized version of the proof has basically the
same structure as the informal proof. It’s a bit more austere, a bit more repetitive,
and some steps get rearranged a bit. It looks like this.
for arbitrary x:

suppose ∀y (y ∈ x ↔ ¬(y ∈ y)):
suppose x ∈ x:

x ∈ x Assumption

∀y (y ∈ x ↔ ¬(y ∈ y)) Assumption
x ∈ x ↔ ¬(x ∈ x) ∀Elim
x ∈ x Assumption
¬(x ∈ x) ↔Elim

¬(x ∈ x) Reductio
∀y (y ∈ x ↔ ¬(y ∈ y)) Assumption
x ∈ x ↔ ¬(x ∈ x) ∀Elim
x ∈ x ↔Elim

suppose x ∈ x:
x ∈ x Assumption

326 CHAPTER 8. THE UNPROVABLE

∀y (y ∈ x ↔ ¬(y ∈ y)) Assumption
x ∈ x ↔ ¬(x ∈ x) ∀Elim
x ∈ x Assumption
¬(x ∈ x) ↔Elim

¬(x ∈ x) Reductio
¬∀y (y ∈ x ↔ ¬(y ∈ y)) Reductio

∀x ¬∀y (y ∈ x ↔ ¬(y ∈ y)) ∀Intro

The main difference from the informal version is that we have formalized all of the
logical connectives, and we have cut out almost all of the other words. We use
indentation to help keep the structure of the proof clear without transition words
like “in that case.” Another difference is that our official proof syntax is a bit more
restrictive than you may be used to when it comes to order you put the steps of the
proof in. (The reason for this is just because it makes our official definitions simpler,
which will make it a little easier to prove things about formal proofs.) Each rule
has to come immediately below the parts of the proof that it relies on. This also
has the effect of making our proofs extra repetitive. For example, in this proof,
the subargument for ¬(x ∈ x) is repeated twice. That’s because this conclusion is
really used twice in the proof: once on the way to the first conclusion x ∈ x, and
a second time to state the contradictory conclusion ¬(x ∈ x). Our official proof
syntax will require us to prove things over again each time we use them.

In practice, a convenient notational shorthand is to leave out redundant subproofs,
and instead just refer to the line number where we originally derived that step.
(We have to be careful not to cheat, though, and refer to conclusions from within
Reductio subproofs that wouldn’t actually be correct in the current context.) Using
this convention a lot lets us rewrite the formal proof in a way which is much more
concise, and maybe a bit less alien-looking.

1 for arbitrary x:
2 suppose ∀y (y ∈ x ↔ ¬(y ∈ y)):
3 suppose x ∈ x:
4 x ∈ x ↔ ¬(x ∈ x) ∀Elim (2)
5 ¬(x ∈ x) ↔Elim (3, 4)
6 ¬(x ∈ x) Reductio (3, 5)
7 x ∈ x ↔ ¬(x ∈ x) ∀Elim (2)
8 x ∈ x ↔Elim (6, 7)
9 ¬∀y (y ∈ x ↔ ¬(y ∈ y)) Reductio (8, 6)

10 ∀x ¬∀y (y ∈ x ↔ ¬(y ∈ y)) ∀Intro

Another detail is that ↔Elim is not really one of the basic rules of our system—

8.1. PROOFS 327

indeed, ↔ is not officially one of our basic connectives. So what we havewritten here
is an abbreviation of the full official proof, which would spell out the biconditional
using & and ¬, and derive the rule of ↔ from the corresponding basic proof rules for
those connectives. We’ll see how this works very soon.

Proof systems that don’t allow intermediate assumptions are called “Hilbert-style”
systems. The main advantage of natural deduction proofs over Hilbert-style proofs
is that they are more intuitive to read and write. The main disadvantage is that nat-
ural deduction proofs are a bit more structurally complex than Hilbert-style proofs.
A natural deduction proof isn’t just a “flat” list of statements: it has interesting syn-
tactic structure. But by this point we have plenty of experience handling complex
syntax.

Our proof system has twelve rules. We can group them into five families—one
family for each basic logical connective (&, ¬, =, and ∀) plus a few extra “structural”
rules for putting pieces together. We’ll start by taking a quick informal tour of
these rules and how to use them, after which we’ll give an official definition that
summarizes them.

The main point of a proof is to show that a certain conclusion follows from certain
premises—in particular, that the conclusion is provable from the premises. If 𝑋 is
set of formulas and 𝐴 is a formula, the notation 𝑋 ⊢ 𝐴 means that the conclusion 𝐴
is provable from premises in 𝑋. We use the same notational shortcuts for the “single
turnstile” notation for provability as we have been using for the “double turnstile”
notation for logical consequence. For instance, 𝑋, 𝐴, 𝐵 ⊢ 𝐶 means the same thing
as 𝑋 ∪ {𝐴, 𝐵} ⊢ 𝐶 . The official definition of provability will come later—after
we have gone through all the pieces of the definition of proofs. But we will be able
to show lots of things about provability before we get that far, as we build up some
particular examples of formal proofs. (This is just like how we could go ahead and
show certain things about decidability long before we had finished our full official
definition of programs.)

Assumption

The simplest kind of proof just asserts something we already know—either because
it is one of our premises, or because we have supposed it for reductio. We call this
rule Assumption.

8.1.1 Example
For any formula 𝐴, and any set of formulas 𝑋,

𝑋, 𝐴 ⊢ 𝐴

328 CHAPTER 8. THE UNPROVABLE

Proof
𝐴 Assumption

Obviously we can’t do very much with the Assumption rule all by itself. But we
usually need it to get a more complicated proof started.

Something to notice right away is that a proof of 𝐴 from some premises 𝑋 doesn’t
actually have to explicitly use all of those premises. It’s okay to just ignore some
premises. (In this way, classical logic is unlike relevant logic, which does require
every premise to actually play a role in the argument.) So, for example, consider
the proof
∀x (suc x ≠ 0) Assumption

This counts as a proof of ∀x (suc x ≠ 0) from just the premise ∀x (suc x ≠ 0)
itself, but it also counts as a proof of this conclusion from bigger premise sets that
include this particular formula—for example, the set of all the axioms of minimal
arithmetic.

Conjunction Rules

Next we have some rules for reasoning about conjunction. The ideas are simple. If
we have proved 𝐴 and 𝐵, then we can deduce the conjunction 𝐴 & 𝐵. We call this
rule Conjunction Introduction, or &Intro for short. For example:

1 1 + 0 = 1 Assumption
2 1 ≠ 0 Assumption
3 (1 + 0 = 1) & (1 ≠ 0) &Intro

In general, to prove 𝐴 & 𝐵, first we write down a proof of 𝐴, then we write down
a proof of 𝐵, and finally we deduce the conjunction.

8.1.2 Example
For any formula 𝐴,

𝐴 ⊢ 𝐴 & 𝐴

Proof
𝐴 Assumption
𝐴 Assumption
𝐴 & 𝐴 &Intro

8.1. PROOFS 329

Something to notice is that our official proof repeats the assumption twice. We
have a proof of 𝐴, and then another proof of 𝐴 (though of course really it’s the
same proof) and finally we deduce the conjunction. In practice, this is the sort of
thing we might abbreviate, like this:

1 𝐴 Assumption
2 𝐴 & 𝐴 &Intro (1, 1)

This indicates that we’re using the same subproof (the one ending at line 1) twice
over. □

Another basic proof rule is that, if we have proved 𝐴 & 𝐵, then we can deduce 𝐴.
Likewise, if we have proved 𝐴 & 𝐵, we can deduce 𝐵. These two rules are called
&Intro1 and &Intro2. (Notice that we really need two rules here. As always, even
though 𝐴 & 𝐵 and 𝐵 & 𝐴 are logically equivalent, that doesn’t make them the
same formula.)

8.1.3 Example
For any formulas 𝐴 and 𝐵,

𝐴 & 𝐵 ⊢ 𝐵 & 𝐴

Proof
1 𝐴 & 𝐵 Assumption
2 𝐵 &Elim2 (1)
3 𝐴 &Elim1 (1)
4 𝐵 & 𝐴 &Intro (2, 3)

If we spell out the repetitive steps explicitly, it looks like this:

𝐴 & 𝐵 Assumption
𝐵 &Elim2
𝐴 & 𝐵 Assumption
𝐴 &Elim1
𝐵 & 𝐴 &Intro

8.1.4 Example
For any formulas 𝐴, 𝐵, and 𝐶 ,

𝐴 & (𝐵 & 𝐶) ⊢ (𝐴 & 𝐵) & 𝐶

330 CHAPTER 8. THE UNPROVABLE

Proof
Notice that in the officially spelled out proof, the premise 𝐴 & (𝐵 & 𝐶) gets
used three times, and so there are three repeated Assumption lines.

𝐴 & (𝐵 & 𝐶) Assumption
𝐴 &Elim1
𝐴 & (𝐵 & 𝐶) Assumption
𝐵 & 𝐶 &Elim2
𝐵 &Elim1
𝐴 & 𝐵 &Intro
𝐴 & (𝐵 & 𝐶) Assumption
𝐵 & 𝐶 &Elim2
𝐶 &Elim2
(𝐴 & 𝐵) & 𝐶 &Intro

Notice the structure of this proof. Before the last line

(𝐴 & 𝐵) & 𝐶 &Intro

there are two subproofs: first, a proof of (𝐴 & 𝐵), and second, a proof of 𝐶 .
Similarly, the line

𝐴 & 𝐵 &Intro

comes after two subproofs; first, a proof of 𝐴, and then a proof of 𝐵. □

The rules for conjunction follow a pattern. We have one introduction rule, which
lets us derive a conjunction as a conclusion. We also have two elimination rules,
which let us use a conjunction as a premise to derive something else. This pattern
is typical: we will also have introduction and elimination rules for other logical
connectives, like = and ∀x. (Negation is a bit special, though.)

8.1.5 Exercise
For any formula 𝐴,

𝐴 & 𝐴 ⊢ 𝐴

Negation Rules

Our tool for “proving a negative” is proof by contradiction, also called reductio ad
absurdum, or Reductio for short. To prove not-𝐴, suppose 𝐴, and then derive a
contradiction from this supposition.

8.1. PROOFS 331

8.1.6 Example
For any formulas 𝐴 and 𝐵,

¬𝐴 ⊢ ¬(𝐴 & 𝐵)

Proof
1 suppose 𝐴 & 𝐵 :
2 𝐴 & 𝐵 Assumption
3 𝐴 &Elim1
4 ¬𝐴 Assumption
5 ¬(𝐴 & 𝐵) Reductio

In this proof, we add an extra assumption, 𝐴 & 𝐵. We use this assumption to derive
a contradiction: that is, first we have a subproof for 𝐴, and then we have another
subproof for ¬𝐴 . Then we can conclude that our original assumption was false.

In general, Reductio looks like this. To get a proof of ¬𝐴, first we write down
suppose 𝐴 :. Then we write down two subproofs: a proof of some formula 𝐵
(this can be any formula we want), and a proof of its negation ¬𝐵. These subproofs
can use 𝐴 as an Assumption step wherever we want (in addition to any other as-
sumptions we already had available). Finally, we write down our conclusion, ¬𝐴
by Reductio. Here is the template:

suppose 𝐴 :
⋮
𝐵
⋮
¬𝐵

¬𝐴 Reductio

We’ll state the rules more rigorously in Section 8.2.

An alternative label for Reductio is ¬Intro (following the same Intro/Elim nam-
ing pattern as conjunction). Feel free to use it if you prefer. But I’ll stick with the
traditional medieval name.

We don’t have a proof rule that lets us derive conclusions from an arbitrary negated
premise. Instead, we have double-negation elimination, or ¬¬Elim for short. If we
have a proof of ¬¬𝐴, then underneath it we can write the line

𝐴 ¬¬Elim

332 CHAPTER 8. THE UNPROVABLE

8.1.7 Exercise (Explosion)
𝐴, ¬𝐴 ⊢ 𝐵.

Remember, officially our language only includes the connectives & and ¬. Formulas
using other connectives, like → and ∨, are officially considered to be abbreviations of
formulas using & and ¬. Similarly, we will only officially have basic proof rules for
the connectives & and ¬. But we can use the definitions of these other connectives
to derive their standard proof rules, as well.

8.1.8 Example (Modus Ponens)
For any formulas 𝐴 and 𝐵,

𝐴, (𝐴 → 𝐵) ⊢ 𝐵

Proof
Recall that we defined the conditional 𝐴 → 𝐵 to be an abbreviation for ¬∗𝐴 & ¬𝐵.
So what we want to show is

𝐴, ¬ ∗ 𝐴 & ¬𝐵 ⊢ 𝐵 □

We can show this by providing a formal proof.

suppose ¬𝐵 :
𝐴 Assumption
¬𝐵 Assumption
𝐴 & ¬𝐵 &Intro
¬(𝐴 & ¬𝐵) Assumption

¬¬𝐵 Reductio
𝐵 ¬¬Elim

8.1.9 Exercise (Modus Tollens)
For any formulas 𝐴 and 𝐵,

𝐴, (𝐴 → ¬𝐵) ⊢ ¬𝐴

8.1.10 Exercise (Disjunction Introduction)
For any formulas 𝐴 and 𝐵,

𝐴 ⊢ (𝐴 ∨ 𝐵)

𝐵 ⊢ (𝐴 ∨ 𝐵)

8.1. PROOFS 333

(Recall that (𝐴 ∨ 𝐵) is officially an abbreviation for ¬¬𝐴 & ¬𝐵.)

It’s also useful to show some relationships between different provability facts. For
example:

8.1.11 Example (Conditional Proof)
If 𝑋, 𝐴 ⊢ 𝐵, then 𝑋 ⊢ 𝐴 → 𝐵.

(This is also sometimes called the Deduction Theorem.)

Proof
Suppose that 𝑃 is a proof of 𝐵 from the premises 𝑋 ∪ {𝐴}. We want to use 𝑃
to build up a more complex proof of 𝐴 → 𝐵 which only relies on the premises
𝑋. Remember, 𝐴 → 𝐵 is officially an abbreviation for ¬ ∗ 𝐴 & ¬𝐵. So we can
schematically put together a proof like this.

1 suppose 𝐴 & ¬𝐵 :
2 𝐴 & ¬𝐵 Assumption
3 𝐴 &Elim1
4

5 suppose 𝐴 :
6 𝑃 # This is a proof of B from X and A
7

8 𝐴 & ¬𝐵 Assumption
9 ¬𝐵 &Elim2

10 ¬𝐴 Reductio
11 ¬(𝐴 & ¬𝐵) Reductio

Notice in particular that this proof does not rely on the assumption 𝐴: this assump-
tion is available within the inner Reductio subproof, but not outside of it. So this
is a proof of ¬ ∗ 𝐴 & ¬𝐵 that just relies on the premises 𝑋. (The whole proof uses
these premises because the subproof 𝑃 uses them and they have not been caught by
any suppose line.) □

8.1.12 Exercise (Contraposition)
𝑋, 𝐴 ⊢ 𝐵 iff 𝑋, ¬𝐵 ⊢ ¬𝐴.

334 CHAPTER 8. THE UNPROVABLE

Identity Rules

We also have an introduction rule and an elimination rule for the identity symbol
=. The introduction rule says that we can always prove a thing is identical to itself
(from no premises). That is, we can always write a one-line proof of 𝑎 = 𝑎, where
𝑎 is any term. The pattern-following name for this is =Intro, and the traditional
name is simply Identity. (Feel free to use either one.)

The elimination rule says (putting it a bit roughly) that if we know 𝑎 and 𝑏 are the
very same thing, and we have also proved that 𝑎 has a certain property, then we
can conclude that 𝑏 has the property as well. Our more official version doesn’t say
anything about properties, though: instead we do it by substituting the terms 𝑎 and
𝑏 into a certain formula.) If we have a proof of 𝑎 = 𝑏 and a proof of 𝐴(𝑎), then we
can stick those proofs together and then deduce 𝐴(𝑏). This is called either =Elim or
Leibniz's Law.

8.1.13 Example
For any terms 𝑎 and 𝑏,

𝑎 = 𝑏 ⊢ 𝑏 = 𝑎
Proof
𝑎 = 𝑏 Assumption
𝑎 = 𝑎 =Intro
𝑏 = 𝑎 =Elim

In this proof, we have a one-line subproof of 𝑎 = 𝑏 , then another one-line sub-
proof of 𝑎 = 𝑎 . We can think of this second proof as saying that 𝑎 has the prop-
erty of being idential to 𝑏—so the last line concludes that 𝑏 also has this property.
More officially, what’s going on is that the second line is the result of plugging 𝑎
into the formula x = 𝑎 , and the third line is the result of plugging 𝑏 into that same
formula. □

8.1.14 Exercise (Euclid’s Property)
For any terms 𝑎, 𝑏, and 𝑐,

𝑎 = 𝑏, 𝑎 = 𝑐 ⊢ 𝑏 = 𝑐

8.1. PROOFS 335

Quantifier Rules

Finally, the universal quantifier also has an introduction rule and an elimination
rule. Let’s consider the elimination rule first, because it’s easier. If we know that
everything has a certain property, then we also know that each particular thing has
that property. Again, our official version of the rule doesn’t say anything about
“properties”, and uses substitution instead. Given ∀𝑥 𝐴(𝑥), we can deduce 𝐴(𝑎).

∀Elim ∶ ∀𝑥 𝐴 ⊢ 𝐴[𝑥 ↦ 𝑎]

8.1.15 Exercise (Existential Generalization)
For any term 𝑎 and formula 𝐴(𝑥),

𝐴(𝑎) ⊢ ∃𝑥 𝐴(𝑥)

(Recall that ∃𝑥 𝐴(𝑥) is officially an abbreviation for ¬∀𝑥 ¬𝐴(𝑥).)

The final rule is the subtlest. First, we should call attention to something that has
been in the background so far. In our proof system, the steps of a proof can in-
clude free variables—they don’t have to be whole sentences. For example, this is
a perfectly fine proof.

1 x = 0 + x Assumption
2 x > 0 Assumption
3 0 + x > 0 =Elim

Here we have used the free variable x and the open term 0 + x as our terms 𝑎 and
𝑏 for an application of Leibniz’s Law (=Elim, plugging each of these terms into the
formula y > 0). Variables, and terms that include variables, can be used just like
any other terms in our proofs.

It might seem odd to allow this, but it actually reflects an important aspect of our
informal proofs. Remember the example we considered earlier—the reasoning of
Russell’s paradox. It looked like this.

Suppose 𝑥 is a set such that 𝑦, 𝑦 is an element of 𝑥 iff 𝑦 is not an element
of 𝑦. So [more reasoning here, where we derive a contradiction from
this assumption]. This shows that there is no set 𝑥 such that, for any 𝑦,
𝑦 is an element of 𝑥 iff 𝑦 is not an element of 𝑦.

We were trying to prove a certain generalization: there is no set with a certain
property. (We could formalize this “no” claim as a universal generalization:
∀x ¬∀y (y ∈ x ↔ ¬(y ∈ y)).) In order to do it, we introduced an informal

336 CHAPTER 8. THE UNPROVABLE

variable with the statement “Let 𝑥 be a set”. We then went on to prove things
“about 𝑥”—that is, we made a bunch of statements that used that variable. But
the variable isn’t meant to stand for any particular thing, the way a name would.
(Indeed, we show in the end that there isn’t anything with the property we are
supposing. It isn’t as if 𝑥 were a name for a non-existent Russell-set.) It’s really a
hard philosophical problem to say exactly what the variable x means in this kind
of reasoning.1 But in any case we can understand why the reasoning is correct:
what we are showing is that 𝑥 has certain properties, given certain assumptions, no
matter what 𝑥 might be.

Our formalization of this reasoning looks like this.
1 for arbitrary x:
2 suppose ∀y (y ∈ x ↔ ¬(y ∈ y)):
3 ⋮ # This is where we derived a contradiction
4 ¬∀y (y ∈ x ↔ ¬(y ∈ y)) Reductio
5 ∀x ¬∀y (y ∈ x ↔ ¬(y ∈ y)) ∀Intro

(The systematic name for this rule is ∀Intro. Its traditional name is
Universal Generalization.)

In this argument, we consider an arbitrary thing 𝑥. We then go on to prove that
this arbitrary 𝑥 does not have the Russell-set-property, and so we can conclude that
nothing has the Russell-set-property—that is, there is no Russell set.

What does it mean for 𝑥 to be “arbitrary”? In our formal proofs, what it means is
that we don’t rely on any special assumptions about what 𝑥 is like. The key feature
that lets us generalize in the last step is that the subproof within the “for arbitrary
𝑥” bit does not rely on any assumptions in which 𝑥 is a free variable.

(This constraint is a little bit subtle. We can have 𝑥 as a free variable in an
Assumption line within that subproof, if it’s an assumption we’ve introduced for
Reductio. But we can’t use any assumptions about 𝑥 that we bring in “from
outside.”)

The general form of the rule looks like this:

for arbitrary 𝑦 :
⋮
𝐴(𝑦)

∀ 𝑥 𝐴(𝑥) ∀Intro

1For example, see Breckenridge and Magidor (2012).

8.2. OFFICIAL SYNTAX 337

The inner subproof should prove 𝐴(𝑦) without relying on any assumptions that in-
clude 𝑦 as a free variable. The details of this rule are explained more precisely in
Section 8.2.

8.1.16 Exercise
(a) ⊢ ⊤.

(b) ⊥ ⊢ 𝐴, for any formula 𝐴.

(Recall that ⊤ is an abbreviation for the standard truth, ∀x (x = x), and ⊥ is an
abbreviation for the standard falsehood ¬⊤.)

8.1.17 Exercise (Change of Variables)
For any variables 𝑥 and 𝑦, and for any formula 𝐴(𝑥) in which 𝑦 does not occur
free,

∀𝑥 𝐴(𝑥) ⊢ ∀𝑦 𝐴(𝑦)

8.1.18 Exercise (Existential Instantiation)
Suppose 𝑥 is not free in 𝐵 or in any formula in 𝑋. Then,

If 𝑋, 𝐴(𝑥) ⊢ 𝐵 then 𝑋, ∃𝑥 𝐴(𝑥) ⊢ 𝐵

This fact corresponds to a kind of reasoning we’ve often used in our informal proofs.
Suppose we know that there is something with the property 𝐴. Then we can “give
it a name”—we suppose in particular that 𝑥 has the property 𝐴. The sequent
𝑋, 𝐴(𝑥) ⊢ 𝐵 corresponds to reasoning that uses the assumption that 𝑥, in particular,
is one of the 𝐴’s. The name we choose had better be “arbitrary”, in the sense that we
haven’t made any other assumptions about 𝑥 already. If we can draw a conclusion
𝐵 that doesn’t say anything specifically about 𝑥, then that conclusion also follows
from the mere existential claim that something is 𝐴.

8.2 Official Syntax

Now that we have gone over the rules for putting together proofs informally, it’s
time to give an official definition. The informal bits and pieces are enough when
we want to show particular things are provable. But the official recursive definition
is important for proving things about all proofs. There are three main facts about
provability that we will show using the recursive definition.

1. Compactness. No formal proof essentially relies on infinitely many premises.

338 CHAPTER 8. THE UNPROVABLE

2. Soundness. If you can formally prove a conclusion from some premises, then
the conclusion is a logical consequence of those premises in the sense we
defined in Chapter 5. In other words, no argument has both a proof and a
counterexample.

3. Decidability. The question of what counts as a formal proof is effectively
decidable. The question of what is provable from a decidable set of premises
is not always decidable, but it is at least semi-decidable. (We’ll return to this
one in Section 8.5.)

8.2.1 Definition
We recursively define the relation 𝑃 is a proof of 𝐴 from the premises 𝑋, or 𝑃
proves 𝑋 ⊢ 𝐴 for short, where 𝑋 is any set of sentences and 𝐴 is any sentence.

1. For any sentence 𝐴 and any set of sentences 𝑋,

𝐴 Assumption

proves 𝑋, 𝐴 ⊢ 𝐴.

2. If 𝑃 proves 𝑋 ⊢ 𝐴, and 𝑄 proves 𝑋 ⊢ 𝐵, then

𝑃
𝑄
𝐴 & 𝐵 &Intro

proves 𝑋 ⊢ 𝐴 & 𝐵.

3. If 𝑃 proves 𝑋 ⊢ 𝐴 & 𝐵, then

𝑃
𝐴 &Elim1

proves 𝑋 ⊢ 𝐴.

4. If 𝑃 proves 𝑋 ⊢ 𝐴 & 𝐵, then

𝑃
𝐵 &Elim2

proves 𝑋 ⊢ 𝐵.

5. If 𝑃 proves 𝑋, 𝐴 ⊢ 𝐵, and 𝑄 proves 𝑋, 𝐴 ⊢ ¬𝐵, then

8.2. OFFICIAL SYNTAX 339

suppose 𝐴 :
𝑃
𝑄

¬𝐴 Reductio

proves 𝑋 ⊢ ¬𝐴.

6. If 𝑃 proves 𝑋 ⊢ ¬¬𝐴, then

𝑃
𝐴 ¬¬Elim

proves 𝑋 ⊢ 𝐴.

7. For any term 𝑎,
𝑎 = 𝑎 =Intro

proves 𝑋 ⊢ 𝑎 = 𝑎.

8. For any terms 𝑎 and 𝑏, and any formula 𝐴 (in which 𝑥 is free for both 𝑎 and
𝑏), if 𝑃 proves 𝑋 ⊢ 𝑎 = 𝑏, and 𝑄 proves 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑎], then
𝑃
𝑄
𝐴[𝑥 ↦ 𝑏] =Elim

proves 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑏].

9. For any term 𝑎 and formula𝐴 (in which 𝑎 is free for 𝑥), if𝑃 proves𝑋 ⊢ ∀𝑥 𝐴,
then

𝑃
𝐴[𝑥 ↦ 𝑎] ∀Elim

proves 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑎].

10. Suppose 𝑃 proves 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑦], where 𝑦 is a variable which is not free in
any formula in 𝑋, and 𝑦 is free for 𝑥 in 𝐴. Then

for arbitrary 𝑦 :
𝑃

∀ 𝑥 𝐴 ∀Intro

340 CHAPTER 8. THE UNPROVABLE

proves 𝑋, 𝑌 ⊢ ∀𝑥 𝐴, for any set of formulas 𝑌 .

(Typically 𝑥 and 𝑦 will just be the same variable, but the official rule is more
flexible to help us avoid variable name clashes that come up once in a while.)

As in any recursive definition, we can say “that’s all”: 𝑃 proves 𝑋 ⊢ 𝐴 only when
this statement can eventually be reached by applying these rules.

Those are our official syntax rules. These rules are pretty rigid, but there are a
bunch of ways in which we relax these official rules when we are writing out formal
proofs in practice. (These shortcuts are analogous to the notational flexibility we
have allowed ourselves for terms, formulas, and programs.)

• We are rather free with whitespace.

• We use all of our usual notational shortcuts for writing down formulas and
terms.

• We use “derived rules” like Modus Ponens as if they were part of our basic
repertoire.

• In rules like &Intro, =Elim, and Reductio that have two subproofs 𝑃 and 𝑄,
we sometimes mix up the order of the two subproofs.

• Instead of repeating a whole proof of a statement, sometimes we will just
write the line number where the statement was previously proved (as long
as that earlier proof didn’t use any assumptions that aren’t available for our
subproof). When we use this style, we also can just refer to the line number
of a suppose line to indicate that we are using a corresponding one-line proof
by Assumption.

8.2.2 Definition
(a) We say 𝑃 is a proof iff there are some 𝑋 and 𝐴 such that 𝑃 proves 𝑋 ⊢ 𝐴.

(b) We say 𝐴 is provable from 𝑋 (abbreviated 𝑋 ⊢ 𝐴) iff there is some proof
𝑃 such that 𝑃 proves 𝑋 ⊢ 𝐴.

8.2.3 Example (Standard truth)
𝑋 ⊢ ⊤ for any set of formulas 𝑋.

Proof
Recall that ⊤ is an abbreviation for ∀x (x = x). We can write a formal proof:

8.2. OFFICIAL SYNTAX 341

for arbitrary x:
x = x =Intro

∀x (x = x) ∀Intro

Let’s explicitly check that this is a proof of 𝑋 ⊢ ∀𝑥 𝑥 = 𝑥, using Definition 8.2.1.

First, the subproof x = x =Intro is a proof of ∅ ⊢ 𝑥 = 𝑥. Furthermore, the
variable x does not appear free in any formula in the empty set. Thus the whole
thing proves 𝑋 ⊢ ∀𝑥 𝑥 = 𝑥.

(One detail to notice is that the ∀Intro rule lets us add in the extra premises from
𝑋, which aren’t used in the subproof. This is important, because in general those
premises might include the free variable x, in which case we aren’t allowed to use
them in the inner proof.) □

8.2.4 Example
For any set of formulas 𝑋 and any formula 𝐴,

If 𝑋, ¬𝐴 ⊢ ⊥ then 𝑋 ⊢ 𝐴

Proof
Remember that ⊥ is an abbreviation for ¬⊤. Suppose that 𝑃 proves 𝑋, ¬𝐴 ⊢ ¬⊤.
We can use this to put together a proof for 𝑋 ⊢ 𝐴, as follows. Let 𝑄 be the proof
given by Example 8.2.3 for 𝑋, ¬𝐴 ⊢ ⊤. Then the following proves 𝑋 ⊢ 𝐴.

suppose ¬𝐴 :
𝑄
𝑃

¬¬𝐴 Reductio
𝐴 ¬¬Elim

To be explicit: since
𝑄 proves 𝑋, ¬𝐴 ⊢ ⊤

𝑃 proves 𝑋, ¬𝐴 ⊢ ¬⊤

this means the Reductio part proves

𝑋 ⊢ ¬¬𝐴

Thus the whole proof with the ¬¬Elim step proves

𝑋 ⊢ 𝐴 □

342 CHAPTER 8. THE UNPROVABLE

We have spelled out a definition of how proofs are put together, and what each
proof proves. But often what we are most interested in is not the details of what
proofs are like, but just what is provable somehow or other. So it’s helpful to sum-
marize the recursive definition of proofs (Definition 8.2.1) just in terms of what
it tells us about what is provable, leaving out all the syntactic details about what
the proof that proves it happens to look like. This straightforwardly follows from
(Definition 8.2.1).

8.2.5 Proposition
Provability is closed under each of the following rules.

Assumption𝑋, 𝐴 ⊢ 𝐴

𝑋 ⊢ 𝐴 𝑋 ⊢ 𝐵 &Intro
𝑋 ⊢ 𝐴 & 𝐵

𝑋 ⊢ 𝐴 & 𝐵
&Elim1𝑋 ⊢ 𝐴

𝑋 ⊢ 𝐴 & 𝐵
&Elim2𝑋 ⊢ 𝐵

𝑋, 𝐴 ⊢ 𝐵 𝑋, 𝐴 ⊢ ¬𝐵
Reductio

𝑋 ⊢ ¬𝐴
𝑋 ⊢ ¬¬𝐴

¬¬Elim𝑋 ⊢ 𝐴

=Intro
𝑋 ⊢ 𝑎 = 𝑎

𝑋 ⊢ 𝑎 = 𝑏 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑎]
=Elim𝑋 ⊢ 𝐴[𝑥 ↦ 𝑏]

𝑋 ⊢ 𝐴[𝑥 ↦ 𝑦]
∀Intro, where 𝑦 is not free in 𝑋

𝑋, 𝑌 ⊢ ∀𝑥 𝐴
𝑋 ⊢ ∀𝑥 𝐴

∀Elim𝑋 ⊢ 𝐴[𝑥 ↦ 𝑎]

Taking this perspective, we can give more elegant (informal) proofs of (formal)
provability facts, which abstract from the details of what particular proofs look like.
For example, we can redo the proof of Example 8.2.4 much more compactly, by
leaving out all of the syntactic details of proofs.

Second proof
We want to show:

If 𝑋, ¬𝐴 ⊢ ⊥ then 𝑋 ⊢ 𝐴

8.2. OFFICIAL SYNTAX 343

We do this as follows.
𝑋, ¬𝐴 ⊢ ⊤ Standard truth exercise
𝑋, ¬𝐴 ⊢ ¬⊤ by assumption

𝑋 ⊢ ¬¬𝐴 Reductio

𝑋 ⊢ 𝐴 ¬¬Elim □

Another common presentation style for this kind of proof uses a diagram. Here is
a third way of presenting the same proof of Example 8.2.4.

Third proof

Standard truth exercise
𝑋, ¬𝐴 ⊢ ⊤ 𝑋, ¬𝐴 ⊢ ¬⊤

Reductio
𝑋 ⊢ ¬¬𝐴

¬¬Elim𝑋 ⊢ 𝐴 □

Each line in the diagram corresponds to some fact we know about provability—
either from the definition, or from things we have already shown. This spare pre-
sentation style is common in proof theory. (But it is entirely optional.)

8.2.6 Exercise
Use Proposition 8.2.5 to show

𝐴, (𝐴 → 𝐵) ⊢ 𝐵

(Recall that (𝐴 → 𝐵) is officially an abbreviation for ¬ ∗ 𝐴 & ¬𝐵.)

Proofs and provability are defined recursively. This means we can do yet another
kind of proof by induction: induction on proofs. This works essentially the same
way as induction on terms, formulas, or programs. Let’s start with an example.

8.2.7 Example (Weakening)
For any sets of formulas 𝑋 and 𝑌 , and any formula 𝐴, if 𝑋 ⊢ 𝐴, then 𝑋, 𝑌 ⊢ 𝐴.

Proof
Let 𝑌 be any set. We will prove the following by induction on proofs:

For any 𝑃 , 𝑋, and 𝐴 such that 𝑃 proves 𝑋 ⊢ 𝐴, 𝑃 also proves 𝑋, 𝑌 ⊢
𝐴.

344 CHAPTER 8. THE UNPROVABLE

This proof is long and tedious, but not difficult. This is typical of induction on
proofs. The proof has ten steps, corresponding to the ten rules for putting together
proofs.

1. (Assumption) Consider a proof

𝐴 Assumption

which proves 𝑋, 𝐴 ⊢ 𝐴. Then clearly this same proof also proves 𝑋, 𝑌 , 𝐴 ⊢
𝐴. (Note that (𝑋 ∪ 𝑌) ∪ {𝐴} and (𝑋 ∪ {𝐴}) ∪ 𝑌 are the very same set of
premises—the order doesn’t matter.)

2. (&Intro) Let 𝑃 prove 𝑋 ⊢ 𝐴 and let 𝑄 prove 𝑋 ⊢ 𝐵. We suppose (for
the inductive hypothesis) that 𝑃 also proves 𝑋, 𝑌 ⊢ 𝐴 and 𝑄 also proves
𝑋, 𝑌 ⊢ 𝐵. We want to show that the proof

𝑃
𝑄
𝐴 & 𝐵 &Intro

also proves 𝑋, 𝑌 ⊢ 𝐴 & 𝐵. This immediately follows from the part of Defi-
nition 8.2.1 for &Intro.

3. (&Elim) Let 𝑃 prove 𝑋 ⊢ 𝐴 & 𝐵. Suppose for the inductive hypothesis that
𝑃 also proves 𝑋, 𝑌 ⊢ 𝐴 & 𝐵. We want to show that

𝑃
𝐴 &Elim1

proves 𝑋, 𝑌 ⊢ 𝐴. Again, this is clear from the part of Definition 8.2.1 for
&Elim1.

4. (&Elim2) This step goes just like &Elim1.

5. (Reductio) Let 𝑃 prove 𝑋, 𝐴 ⊢ 𝐵 and let 𝑄 prove 𝑋, 𝐴 ⊢ ¬𝐵. Suppose that
𝑃 also proves 𝑋, 𝑌 , 𝐴 ⊢ 𝐵 and 𝑄 also proves 𝑋, 𝑌 , 𝐴 ⊢ ¬𝐵. (Again, note
that the order of premises doesn’t matter.) We want to show that

suppose 𝐴 :
𝑃
𝑄

¬𝐴 Reductio

also proves 𝑋, 𝑌 ⊢ ¬𝐴. Again, this follows from Definition 8.2.1.

8.2. OFFICIAL SYNTAX 345

And so on. The remaining steps continue in just the same way. For each rule, we
suppose for our inductive hypothesis that each component proof can be “weakened”
by adding more unused premises, and then we put these “weakened” component
proofs back together using the very same rule. The only step that is slightly trickier
is ∀Intro.

10. (∀Intro) Let 𝑃 prove 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑦] where 𝑦 is not free in 𝑋. Suppose that
𝑃 also proves 𝑋, 𝑌 ⊢ 𝐴[𝑥 ↦ 𝑦]. We want to show that

for arbitrary 𝑦 :
𝑃

∀x 𝐴 ∀Intro

also proves 𝑋, 𝑍, 𝑌 ⊢ ∀𝑥 𝐴. In this case, we can just ignore the inductive
hypothesis: since 𝑃 proves 𝑋 ⊢ ∀𝑥 𝐴 and 𝑥 is not free in 𝑋, the definition
tells us that this ∀Intro proof also proves 𝑋, 𝑍, 𝑌 ⊢ ∀𝑥 𝐴. □

8.2.8 Technique (Proof by induction on proofs)
Suppose you want to prove that every proof of a conclusion from premises is nice.
That is, you want to show that whenever 𝑃 proves 𝑋 ⊢ 𝐴, the triple of 𝑃 , 𝑋, and
𝐴 is nice. You can show this in ten steps, one for each proof rule. In each step, you
consider a proof put together from subproofs using one of the ten rules. Suppose
that each of the subproofs are nice, and show that this implies the whole proof is
nice as well. Then you are done.

Sometimes you use this technique to show something that isn’t explicitly about
proofs at all, but just about what is provable. The trick is that, in order to show

Whenever 𝑋 ⊢ 𝐴,

(fill in the blank) it is enough to show

Whenever 𝑃 proves 𝑋 ⊢ 𝐴,

You can show this by induction on the syntax of proofs.

8.2.9 Example (Provability is Compact)
If 𝑋 ⊢ 𝐴, then there is a finite subset 𝑋0 ⊆ 𝑋 such that 𝑋0 ⊢ 𝐴.

The basic reason for this is that each proof has just finitely many steps, and each
step of a proof only relies on finitely many premises, so the proof can only rely
on finitely many premises all together. This is intuitively clear enough. But to get

346 CHAPTER 8. THE UNPROVABLE

some practice with provability-induction, let’s go ahead and show this fact in detail.
It’s a little trickier than you might expect.

Proof
We prove this by induction on proofs. Again, there are ten steps, and again this
proof is long and tedious, but easy. We’ll just spell out a few parts of it, to get the
idea. We will show more specifically that whenever 𝑃 proves 𝑋 ⊢ 𝐴, there is some
finite subset 𝑋0 ⊆ 𝑋 such that 𝑃 proves 𝑋0 ⊢ 𝐴 as well.

1. (Assumption) Any proof by assumption of 𝑋, 𝐴 ⊢ 𝐴 is also a proof of 𝐴 ⊢ 𝐴,
and {𝐴} is a finite subset of 𝑋 ∪ {𝐴}.

2. (&Intro) Let 𝑃 prove 𝑋 ⊢ 𝐴 and let 𝑄 prove 𝑋 ⊢ 𝐵. Suppose for the
inductive hypothesis that there are finite subsets 𝑋0 ⊆ 𝑋 and 𝑌0 ⊆ 𝑋 such
that 𝑃 proves 𝑋0 ⊢ 𝐴 and 𝑄 proves 𝑌0 ⊢ 𝐵. By Weakening, we also have

𝑃 proves 𝑋0, 𝑌0 ⊢ 𝐴
𝑄 proves 𝑋0, 𝑌0 ⊢ 𝐵

and 𝑋0 ∪ 𝑌0 is also a finite subset of 𝑋. Then the proof

𝑃
𝑄
𝐴 & 𝐵 &Intro

proves 𝑋0, 𝑌0 ⊢ 𝐴 & 𝐵 as well.

We’ll skip steps 3–8, since they all go basically the same way.

9. (∀Elim) Let 𝑃 prove 𝑋 ⊢ ∀𝑥 𝐴. Suppose for the inductive hypothesis that
there is a finite subset 𝑋0 ⊆ 𝑋 such that

𝑃 proves 𝑋0 ⊢ ∀𝑥 𝐴

Then

𝑃
𝐴[𝑥 ↦ 𝑡] ∀Elim

proves 𝑋0 ⊢ 𝐴[𝑥 ↦ 𝑡].
10. (∀Intro) Let 𝑃 prove 𝑋 ⊢ 𝐴[𝑥 ↦ 𝑦] (where 𝑦 is not free in any formula in

𝑋) and suppose that there is a finite subset 𝑋0 ⊆ 𝑋 such that

𝑃 proves 𝑋0 ⊢ 𝐴[𝑥 ↦ 𝑦]

8.2. OFFICIAL SYNTAX 347

Then

for arbitrary 𝑦 :
𝑃

∀x 𝐴 ∀Intro

also proves 𝑋0 ⊢ ∀𝑥 𝐴, and 𝑋0 is a finite subset of 𝑋 ∪ 𝑌 .

That completes the induction. □

8.2.10 Exercise
Fill in the steps for Reductio, ¬¬Elim, and =Intro in the inductive proof of
Example 8.2.9.

8.2.11 Exercise
Let 𝑋 be a set of formulas. Use the fact that Provability is Compact to show
that, if every finite subset of 𝑋 is consistent, then 𝑋 is consistent (in the proof-
theoretic sense).

Here’s another important fact: you can stick two proofs together to get a proof. If
you have a proof of a conclusion 𝐴, and another proof that uses 𝐴 as a premise, then
you can stick those together into one proof. Spelling that out a bit more, suppose you
have a proof of 𝑋 ⊢ 𝐴, and another proof of 𝑌 , 𝐴 ⊢ 𝐵, which uses the conclusion
of the first proof as a premise. Then by “sticking together” these proofs, we get a
proof of 𝑋, 𝑌 ⊢ 𝐵. That is, our conclusion is still 𝐵, but we don’t rely on 𝐴 as
a premise anymore—since it is proved along the way. Instead, we have whatever
premises the first proof used to prove 𝐴.

8.2.12 Example (Cut)
If 𝑋 ⊢ 𝐴 and 𝑌 , 𝐴 ⊢ 𝐵, then 𝑋, 𝑌 ⊢ 𝐵.

Proof
We’ll prove this by induction on proofs again. This time, we have to choose which
of the two statements to do the induction on—the “upper proof” 𝑋 ⊢ 𝐴, or the
“lower proof” 𝑌 , 𝐴 ⊢ 𝐵. The intuitive idea is that we can add the steps of the lower
proof onto the upper proof, one by one. This gives us a clue that the lower proof is
the one we want to do induction on. In other words, we will prove:

Whenever 𝑃 proves 𝑌 , 𝐴 ⊢ 𝐵, if 𝑋 ⊢ 𝐴, then 𝑋, 𝑌 ⊢ 𝐵.

It might be helpful to put that even more explicitly in the “official” form for a state-

348 CHAPTER 8. THE UNPROVABLE

ment to proved inductively. Let 𝑋 be a set of formulas, and let 𝐴 be a formula, and
suppose 𝑋 ⊢ 𝐴. We want to show that every triple (𝑃 , 𝑌 ′, 𝐵) such that 𝑃 proves
𝑌 ′ ⊢ 𝐵 has the following property:

For any set of formulas 𝑌 , if 𝑌 ′ = 𝑌 ∪ {𝐴}, then 𝑋, 𝑌 ⊢ 𝐵.

What we have to show is that every proof inherits this property from its subproofs.
As usual there are ten parts to this proof. It is still long and tedious, but not quite
as straightforward as some of the others. We’ll go through some of the steps, and
leave the rest as exercises.

In order to avoid some messiness (in the ∀Intro step in particular), we’ll make
a simplifying assumption: no variable 𝑥 is both free in some formula in 𝑋, and
also used as an arbitrary variable somewhere in the proof 𝑃 (appearing in a line
for arbitrary 𝑥 :. If a clash like this did come up, we could always just switch
to using a different variable in the proof 𝑃 . This would still be a perfectly good
proof of the same conclusion from the same premises.2

(But what if 𝑋 is an infinite set that uses up all of the free variables? To avoid this
case, we can start by finding a finite subset 𝑋0 ⊆ 𝑋 such that 𝑋0 ⊢ 𝐴. This is
guaranteed to only have finitely many free variables. Then we can use the same
argument we give below to prove that, if 𝑌 , 𝐴 ⊢ 𝐵, then 𝑋0, 𝑌 ⊢ 𝐴. Finally,
𝑋, 𝑌 ⊢ 𝐴 follows by Weakening.)

1. Consider a proof of 𝑌 , 𝐴 ⊢ 𝐵 by Assumption. This means 𝐵 must be an
element of 𝑌 ∪ {𝐴}. That is, either 𝐵 is 𝐴, or else 𝐵 ∈ 𝑌 .

If 𝐴 = 𝐵, then since we have already assumed that 𝑋 ⊢ 𝐴, we know 𝑋 ⊢ 𝐵.
So by Weakening, 𝑋, 𝑌 ⊢ 𝐵.

If 𝐵 ∈ 𝑌 , then in fact the same proof by Assumption also proves 𝑌 ⊢ 𝐵. So
again by Weakening, 𝑋, 𝑌 ⊢ 𝐵.

In either case, we have 𝑋, 𝑌 ⊢ 𝐵, which is what we needed to show for this
part.

2. Consider a proof of 𝑌 , 𝐴 ⊢ 𝐵 & 𝐶 by &Intro. This has two subproofs:

𝑃 proves 𝑌 , 𝐴 ⊢ 𝐵
𝑄 proves 𝑌 , 𝐴 ⊢ 𝐶

2This complication in our proof of Cut is very closely parallel to the complication that “captured”
variables introduced for our definition of substitution in formulas (Definition 5.1.7). In general, there
is a close analogy between Cut and substitution. Premises in proofs are closely analogous to free
variables in terms and formulas. This is part of a family of analogies called the “Curry-Howard
correspondence.”

8.2. OFFICIAL SYNTAX 349

For the inductive hypothesis, we suppose that each of these subproofs have
the property. This means:

𝑋, 𝑌 ⊢ 𝐵
𝑋, 𝑌 ⊢ 𝐶

Then we can put together these two new proofs into another proof using
&Intro: this shows

𝑋, 𝑌 ⊢ 𝐵 & 𝐶
This is what we needed to show.

The steps for &Elim1 and &Elim2 are left as an exercise.

5. Consider a proof by Reductio of 𝑌 , 𝐴 ⊢ ¬𝐵. This also has two subproofs
(for some formula 𝐶):

𝑃 proves 𝑌 , 𝐴, 𝐵 ⊢ 𝐶
𝑄 proves 𝑌 , 𝐴, 𝐵 ⊢ ¬𝐶

In this case our inductive hypothesis says:

𝑋, 𝑌 , 𝐵 ⊢ 𝐶
𝑋, 𝑌 , 𝐵 ⊢ ¬𝐶

Then we can put these back together with Reductio, to conclude:

𝑋, 𝑌 ⊢ ¬𝐵

Again, this is what we needed to show for this part.

6. Consider a proof by ¬¬Elim of 𝑌 , 𝐴 ⊢ 𝐵. This has one subproof:

𝑃 proves 𝑌 , 𝐴 ⊢ ¬¬𝐵

We suppose for the inductive hypothesis:

𝑋, 𝑌 ⊢ ¬¬𝐵

Then we can use ¬¬Elim again to conclude

𝑋, 𝑌 ⊢ 𝐵

The steps for =Intro, =Elim, and ∀Elim are left as exercises. The only step with
some fiddly business is ∀Intro.

350 CHAPTER 8. THE UNPROVABLE

10. Consider a proof by ∀Intro of 𝑌 , 𝐴 ⊢ ∀𝑥𝐵. This has one subproof. The
premises of this subproof are a subset of 𝑌 ∪ {𝐴} in which the variable 𝑦 is
not free. So there are two cases, depending on whether this subset includes
𝐴. There is a subset 𝑍 ⊆ 𝑌 , in which 𝑦 is not free, such that either

𝑃 proves 𝑍 ⊢ 𝐵[𝑥 ↦ 𝑦]

or else
𝑃 proves 𝑍, 𝐴 ⊢ 𝐵[𝑥 ↦ 𝑦]

But the first case also implies the second case, by Weakening. So either way,
our inductive hypothesis tells us

𝑋, 𝑍 ⊢ 𝐵[𝑥 ↦ 𝑦]

We want to show that 𝑋, 𝑌 ⊢ ∀𝑥𝐵. Here is where we’ll use our simplifying
assumption: since the variable 𝑦 is used an arbitrary variable in this proof, by
assumption it is not also a free variable in any formula in 𝑋. This means we
can use ∀Intro again to conclude

𝑋, 𝑌 ⊢ ∀𝑥 𝐵 □

8.2.13 Exercise
Fill in the missing steps in the proof of Cut (Example 8.2.12).

Cut is handy for putting different provability facts together.

8.2.14 Example
TODO.

One important thing about formal proofs is that they line up with the notion of
logical consequence we introduced in Section 5.3. Remember, there we said that 𝐴
is a logical consequence of 𝑋 iff the argument from 𝑋 to 𝐴 has no counterexamples:
there is no structure in which every sentence in 𝑋 is true, and 𝐴 is false. In first-
order logic, proofs and structures fit together neatly. First, if an argument has a
proof, then it has no counterexamples. This fact is called Soundness. Second, if an
argument does not have a counterexample, then it does have a proof. This fact is
calledCompleteness. Putting the two facts together, they tell us that every argument
has a proof or a counterexample, but not both.

8.2. OFFICIAL SYNTAX 351

The Completeness Theorem takes quite a bit of work to prove; this is in Section 8.3.
But at this point we already have everything we need to prove the Soundness The-
orem pretty straightforwardly.

8.2.15 Theorem (Soundness)
Let 𝑋 be a set of formulas, and let 𝐴 be a formula. If 𝐴 is provable from 𝑋, then
𝐴 is true in every model of 𝑋. In short:

If 𝑋 ⊢ 𝐴 then 𝑋 ⊨ 𝐴

Proof beginning
We will prove by induction that every proof 𝑃 of 𝑋 ⊢ 𝐴 has the property that 𝑋 ⊨
𝐴. To show this, we need to show that this property is inherited from subproofs.

It will be helpful to refer back to some facts about logical consequence that we
showed back in Section 5.3.

1. (Assumption) For this step, we need to show that 𝑋, 𝐴 ⊨ 𝐴. This is clearly
true: 𝐴 is true in every model of 𝑋 ∪ {𝐴}.

2. (&Intro) For this step, we suppose that 𝑋 ⊨ 𝐴 and 𝑋 ⊨ 𝐵, and show that
𝑋 ⊨ 𝐴 & 𝐵. We already proved that this follows in Section 5.3.

3. (&Elim1) For this step, we suppose that 𝑋 ⊨ 𝐴 & 𝐵, and prove that 𝑋 ⊨ 𝐴.
Again, we proved this in Section 5.3.

Checking the steps for the remaining proof rules is left as an exercise. □

8.2.16 Exercise
Fill in the remaining steps of the proof of the Soundness Theorem, using facts
about logical consequence from Section 5.3.

Before we move on, we should check a few more basic facts about provability that
we will need later on.

8.2.17 Example (Contraposition)
If 𝑋, 𝐴 ⊢ 𝐵 then 𝑋, ¬𝐵 ⊢ ¬𝐴.

352 CHAPTER 8. THE UNPROVABLE

Proof

𝑋, 𝐴 ⊢ 𝐵 Weakening
𝑋, ¬𝐵, 𝐴 ⊢ 𝐵

Assumption
𝑋, ¬𝐵, 𝐴 ⊢ ¬𝐵

Reductio
𝑋, ¬𝐵 ⊢ ¬𝐴 □

8.2.18 Exercise
The following are equivalent:

𝑋 ⊢ ⊥

𝑋 ⊢ 𝐴 and 𝑋 ⊢ ¬𝐴 for some 𝐴
𝑋 ⊢ 𝐴 for every 𝐴

In Section 5.3 we defined “consistent” to mean “has a model”. For this section and
the next, we’ll use a different definition of “consistent” instead.

8.2.19 Definition
A set 𝑋 is inconsistent iff 𝑋 ⊢ ⊥. (Exercise 8.2.18 gives us two other equivalent
ways of saying this.) Otherwise 𝑋 is consistent.

When we want to contrast the two meanings of “consistent”—this definition using
proofs, and our earlier definition using models—we can distinguish proof-theoretic
consistency and model-theoretic consistency. It is also common to call these syn-
tactic consistency and semantic consistency, respectively. (But this terminology,
while standard, is less transparent and more philosophically loaded.)

In the next section we’ll show that in fact these two definitions exactly line up for
first-order logic. That’s why it isn’t usually such a big deal to have two different
definitions for the same word. But until we’ve proved that fact, we will need to be
careful about which one we are talking about. And while we are showing things
about formal proofs, it will be convenient to keep the word “consistent” reserved
for the proof-theoretic notion.

8.2.20 Exercise
If 𝑋 has a model, then 𝑋 is proof-theoretically consistent: that is, 𝑋 ⊬ ⊥.

8.3. THE COMPLETENESS THEOREM 353

8.3 The Completeness Theorem

The Soundness Theorem shows that no argument has both a proof and a counterex-
ample. There are “not too many” proofs or counterexamples, so they don’t come
into conflict with one another. What we’ll now show is that every argument has one
or the other: any argument with no countermodels has a formal proof. There are
“enough” proofs and countermodels to settle the validity of every argument. The
proof of this fact—the Completeness Theorem—is quite a bit trickier than the proof
of the Soundness Theorem. For Soundness, we just needed to go through all the
basic proof rules and make sure none of them led to trouble. For Completeness,
though, we need to start with something that doesn’t have a proof, and show that it
does have a countermodel—and in this case induction on the structure of proofs is
no help.

(Note that this is a different sense of the word “complete” from our earlier defini-
tion of a (negation-)complete theory—that is, a theory that includes each sentence
or its negation. The two senses of “complete” are related, though. If you have a
negation-complete theory, you can’t add any extra sentences without introducing
inconsistencies. If you have a complete proof system, you can’t give proofs for any
extra arguments without adding proofs for invalid arguments.)

Our strategy is to show that any proof-theoretically consistent set of sentences has
a model. Given a set of sentences 𝑋 which does not prove any contradictions, we
can build up a structure in which every sentence in 𝑋 is true. We’ll do this in four
stages: we’ll start by constructing models for sets of very simple formulas, and
work up to more complicated formulas little by little.

• Stage 1. First, suppose 𝑋 is a set of formulas which don’t include any logical
symbols at all: 𝑋 only contains relation formulas of the form 𝑅(𝑎,𝑏). We’ll
start by constructing a model for 𝑋 in this simple case.

• Stage 2. Next, we’ll show how we can extend the idea of Stage 1 so it also
works for a set 𝑋 that contains identity formulas, of the form 𝑎 = 𝑏. This is
called a canonical model.

(A formula which is either of the form 𝑅(𝑎,𝑏) or of the form 𝑎 = 𝑏 is called
an atomic formula.)

• Stage 3. Next, we’ll allow 𝑋 to include formulas with the other logical con-
nectives (¬, &, and ∀). But we’ll make the further assumption that, not only
is 𝑋 consistent, but also 𝑋 is completely specific, in two different senses.

The first sense is that 𝑋 has an answer to every “yes-or-no” question. For

354 CHAPTER 8. THE UNPROVABLE

each formula 𝐴, either 𝐴 or ¬𝐴 is in 𝑋. (That is, 𝑋 is negation-complete.)
The second sense is that 𝑋 has an answer to every “which” question. For
each formula 𝐴(𝑥), either 𝑋 names some particular example of a thing that
satisfies 𝐴(𝑥)—that is, 𝑋 includes some substitution instance 𝐴(𝑡)—or else
𝑋 says that nothing satisifes 𝐴(𝑥)—that is, 𝑋 includes ∀𝑥 ¬𝐴(𝑥). (In this
case we say 𝑋 is witness-complete.)
We can show that if 𝑋 is consistent and specific in both of these ways, then
𝑋 has a model. (In fact, the same model we constructed in Stage 2 turns out
to work.)

• Stage 4. We’ll show that any consistent set of sentences 𝑋 can be extended
to a consistent set of formulas 𝑋+ which is completely specific in those two
senses. Since Stage 3 shows that this extended set 𝑋+ has a model, this will
also be a model of the smaller set 𝑋.

Stage 1: Relation Formulas

Our first job is to show how to come up with a model for a set of relational formu-
las. Suppose we are given a set 𝑋 that just contains formulas of the form 𝑅(𝑎,𝑏).
We want to come up with a model of 𝑋. We want to come up with some objects
for our formal language to “talk about”, and some way of interpreting each of the
basic pieces of vocabulary in this language. This doesn’t have to be a plausible
interpretation of the language: it’s fine for us to interpret the constant symbol 0 as
denoting a fish or a mountain or whatever we want. We just have to come up with
some structure or other that satisfies 𝑋.

How can we do this? We want a very general recipe that is going to work for
any consistent theory. But this seems a bit magical. All we know about our set
of formulas is that it doesn’t prove any contradictions. Just given this, we have to
conjure some domain of real things for the language to talk about! What sort of
things are guaranteed to exist, just given an abstract formal language?

Here’s the trick: we can use the expressions of the language itself as the domain of
a structure. (Of course the existence of a consistent theory guarantees the existence
of linguistic things!) It turns out that we can interpret the language as talking about
itself!

8.3.1 Definition
Suppose 𝑋 is some set of relational 𝐿-formulas (of the form 𝑅(𝑎,𝑏) where 𝑅 is an
𝐿-predicate and 𝑎 and 𝑏 are 𝐿-terms). Let the simple model for 𝑋 be the pair of a
structure 𝑆 and an assignment function 𝑔 given as follows.

8.3. THE COMPLETENESS THEOREM 355

1. The domain 𝐷𝑆 is the set of all 𝐿-terms.

2. For each constant symbol 𝑐 in 𝐿, the extension 𝑐𝑆 is the constant term 𝑐 itself.

3. For each one-place function symbol 𝑓 , the extension 𝑓𝑆 is the function that
takes each 𝐿-term 𝑎 to the 𝐿-term 𝑓𝑎.

4. For each two-place function symbol 𝑓 , the extension 𝑓𝑆 is the function that
takes each pair of 𝐿-terms 𝑎 and 𝑏 to the 𝐿-term 𝑓(𝑎, 𝑏).

5. For each relation symbol 𝑅 in 𝐿, the extension 𝑅𝑆 is the set of pairs (𝑎, 𝑏) of
a term 𝑎 and a term 𝑏 such that 𝑋 ⊢ 𝑅(𝑎,𝑏).

6. The assignment function 𝑔 is the function that takes each variable 𝑥 to itself.

8.3.2 Exercise
Let 𝑋 be a set of relational formulas, and let 𝑆 and 𝑔 be the structure and assign-
ment from Definition 8.3.1.

(a) Every 𝐿-term 𝑎 denotes itself: that is, ⟦𝑎⟧𝑆𝑔 = 𝑎.
(b) For every 𝐿-formula 𝐴, (𝑆, 𝑔) satisfies 𝐴 iff 𝑋 ⊢ 𝐴.

Stage 2: Identity Formulas

Now we’ll try to come up with a model that will also work for identity formulas.
Suppose, for example, that 𝑋 includes the sentence suc 0 = suc 0 + 0. Notice
that the simple model from Stage 1 definitely won’t satisfy this sentence. On the
“linguistic” interpretation, suc 0 denotes itself, the term suc 0, while suc 0 + 0
denotes the term suc 0 + 0, and these two terms are different. So on the “self-
referential” Stage 1 interpretation, suc 0 = suc 0 + 0 will come out false. So
we’ll need to modify the Stage 1 structure to make it possible for different terms to
denote the same thing.

What we want to do is “blur together” some of the different elements of the do-
main of the Stage 1 structure. There is a neat general trick for doing this, called
the method of equivalence classes. Instead of using the terms themselves as the
elements of our domain, we can use special sets of terms. Each set will contain
some terms that are equivalent to one another, in the sense that 𝑋 says that 𝑎 = 𝑏.
The key observation here is that, even if 𝑎 and 𝑏 are two different terms, if 𝑎 and
𝑏 are equivalent, then the set of terms that are equivalent to 𝑎, and the set of terms
that are equivalent to 𝑏 are the very same object. So sets of terms can do the job of
satisfying the right identity formulas.

356 CHAPTER 8. THE UNPROVABLE

8.3.3 Definition
Let 𝑋 be a set of 𝐿-formulas.

1. Terms 𝑎 and 𝑏 are equivalent given 𝑋 iff 𝑋 ⊢ 𝑎 = 𝑏.

2. For any term 𝑎, the equivalence class of 𝑎 is the set of all terms which are
equivalent to 𝑎 given 𝑋: that is,

𝐸(𝑎) = {𝑏 ∈ 𝐿-terms ∣ 𝑋 ⊢ 𝑎 = 𝑏}

(So 𝐸 is a function that takes each 𝐿-term to a set of 𝐿-terms.)

8.3.4 Exercise
For any 𝐿-terms 𝑎 and 𝑏, 𝐸(𝑎) = 𝐸(𝑏) iff 𝑎 and 𝑏 are equivalent in 𝑋.

8.3.5 Exercise
(a) For any 𝐿-terms 𝑎 and 𝑏, if 𝐸(𝑎) = 𝐸(𝑏), then for any one-place function

symbol 𝑓 , 𝐸(𝑓𝑎) = 𝐸(𝑓𝑏).
(b) State the generalization of (a) for two-place function symbols. (But you

don’t have to prove this separately.)

8.3.6 Definition
Let 𝑋 be a set of atomic formulas. The canonical model for 𝑋 is the pair (𝑆, 𝑔) of
a structure and assignment constructed as follows.

1. The domain of 𝑆 is the range of 𝐸. That is, 𝐷𝑆 is the set of all equivalence
classes of 𝐿-terms.

2. For each constant 𝑐, the value 𝑐𝑆 is the equivalence class 𝐸(𝑐).

3. For each one-place function symbol 𝑓 , the extension 𝑓𝑆 is a function from
equivalence classes to equivalence classes, defined so that for each term 𝑎:

𝑓𝑆(𝐸(𝑎)) = 𝐸(𝑓𝑎)

This is well-defined, because if 𝐸(𝑎) = 𝐸(𝑏), then 𝐸(𝑓𝑎) = 𝐸(𝑓𝑏) as well.

4. The clause for two-place function symbols is similar.

5. For each relation symbol 𝑅, the extension 𝑅𝑆 is the set of pairs

{(𝐸(𝑎), 𝐸(𝑏)) ∣ 𝑋 ⊢ 𝑅(𝑎,𝑏) for any 𝐿-terms 𝑎 and 𝑏}

8.3. THE COMPLETENESS THEOREM 357

6. For each variable 𝑥, the assignment 𝑔 takes the variable 𝑥 to its equivalence
class 𝐸(𝑥).

8.3.7 Exercise
Let 𝑋 be a set of atomic formulas, and let (𝑆, 𝑔) be the canonical model for 𝑋.

(a) Every 𝐿-term 𝑎 denotes its own equivalence class:

⟦𝑎⟧𝑆𝑔 = 𝐸(𝑎)

(b) For any two-place relation symbol 𝑅 and any 𝐿-terms 𝑎 and 𝑏,

(𝑆, 𝑔) satisfies 𝑅(𝑎,𝑏) iff 𝑋 ⊢ 𝑅(𝑎,𝑏)

(c) For any 𝐿-terms 𝑎 and 𝑏,

(𝑆, 𝑔) satisfies 𝑎 = 𝑏 iff 𝑋 ⊢ 𝑎 = 𝑏

8.3.8 Exercise
Is the domain of the canonical model countable or uncountable? Explain.

Stage 3: Negation-Complete and Witness-Complete Theories

The Stage 2 model correctly handles atomic formulas, including identity. But so far
it doesn’t “know about” the rest of logic.

For example, consider the set 𝑋 = {∃x (f(x) = c)}. This set 𝑋 doesn’t imply
any identities for any two distinct terms. So in fact, the canonical model for 𝑋 has
as its domain the singleton sets for every term, and in this structure the extension of
the function symbol f takes each set {𝑡} to the singleton set {f(𝑡)}. This function
doesn’t map anything to the singleton set {c}. So if we construct the canonical
model for 𝑋 in the same way as Stage 2, the existential claim ∃x (f(x) = c) will
turn out to be false, even though 𝑋 “says” that it’s true.

The trouble here is that 𝑋 includes an “unwitnessed” generalization: it says that
something has to satisfy a condition (getting mapped to 𝑐), but it doesn’t provide any
specific example of a thing that satisfies that condition. We can avoid this problem
if we add an extra specificity constraint, that insists that every generalization has a
specific “witness”. For Stage 2, we want to consider a “completely specific” set of
formulas. Here’s what that means.

358 CHAPTER 8. THE UNPROVABLE

8.3.9 Definition
Let 𝑋 be a set of 𝐿-formulas.

1. 𝑋 is negation-complete iff for every 𝐿-formula 𝐴, either 𝐴 ∈ 𝑋 or ¬𝐴 ∈ 𝑋.
(This is the same as our earlier definition of “complete” from Section 5.3.)

2. 𝑋 is witness-complete iff for every 𝐿-formula 𝐴(𝑥), either there is some
𝐿-term 𝑡 such that 𝐴(𝑡) ∈ 𝑋, or else ∀𝑥 ¬𝐴(𝑥) ∈ 𝑋.

8.3.10 Exercise
If 𝑋 is consistent and negation-complete, then 𝑋 ⊢ 𝐴 iff 𝐴 ∈ 𝑋.

8.3.11 Exercise
Suppose that 𝑋 is consistent, negation-complete, and witness-complete.

(a) ¬𝐴 ∈ 𝑋 iff 𝐴 ∉ 𝑋.

(b) 𝐴 & 𝐵 ∈ 𝑋 iff 𝐴 ∈ 𝑋 and 𝐵 ∈ 𝑋.

(c) ∀𝑥 𝐴(𝑥) ∈ 𝑋 iff for every term 𝑡, 𝐴(𝑡) ∈ 𝑋.

8.3.12 Exercise
Suppose that 𝑋 is consistent, negation-complete, and witness-complete. Let 𝑋0
be the set of atomic formulas in 𝑋, and let (𝑆, 𝑔) be the canonical model for 𝑋0
(as in Definition 8.3.6). For any formula 𝐴,

(𝑆, 𝑔) satisfies 𝐴 iff 𝐴 ∈ 𝑋

Hint. Use induction on the complexity of 𝐴. Exercise 8.3.7 and Exercise 8.3.11
will help.

8.3.13 Lemma
Suppose 𝑋 is a consistent, negation-complete, and witness-complete set of formu-
las. Then 𝑋 has a model.

Proof
By Exercise 8.3.12, the canonical model for the set of atomic formulas in 𝑋 is a
model of 𝑋. □

8.3. THE COMPLETENESS THEOREM 359

Stage 4: Extending a Consistent Set

The last step is to get from an arbitrary consistent set to a bigger set which is also
negation-complete and witness-complete. To do this, we’ll use the following three
facts about consistency.

8.3.14 Exercise
If 𝑋 ∪ {𝐴} is inconsistent, and 𝑋 ∪ {¬𝐴} is inconsistent, then 𝑋 is inconsistent.

8.3.15 Exercise
If 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ … is a chain of consistent sets, then their union ⋃𝑛 𝑋𝑛 is
consistent.

Hint. Recall this fact from back in Chapter 2: if 𝑌 is a finite subset of ⋃𝑖 𝑋𝑖,
then there is some number 𝑛 for which 𝑌 is a subset of 𝑋𝑛.

8.3.16 Lemma
Suppose that 𝑋 is a consistent set of formulas. Then 𝑋 has a consistent and
negation-complete extension.

Proof
The idea is that we can go through all the formulas one by one, and in each case
if it’s consistent with what we already have we can add it in, and otherwise we
can add in its negation. We can make this idea precise with an inductive argument.
There are countably infinitely many formulas: so we can put them all in an infinite
sequence, so each formula is 𝐴𝑛 for some number 𝑛. Then we can recursively define
a sequence of sets, as follows:

𝑋0 = 𝑋

𝑋𝑛+1 =
{

𝑋𝑛 ∪ {𝐴𝑛} if this is consistent
𝑋𝑛 ∪ {¬𝐴𝑛} otherwise

We start with our original consistent set 𝑋, and go through all the formulas adding it
or its negation. We can prove by induction that for every number 𝑛, 𝑋𝑛 is consistent.
For the base case, 𝑋0 is consistent by assumption. For the inductive step, we need to
show that if 𝑋𝑛 is consistent, then either 𝑋𝑛 ∪{𝐴𝑛} is consistent or else 𝑋𝑛 ∪{¬𝐴𝑛}
is consistent. This follows from Exercise 8.3.14: this exercise showed that if both
of these two sets are inconsistent, then 𝑋𝑛 must also be inconsistent.

So each set 𝑋𝑛 is consistent. Furthermore, these sets form a chain 𝑋0 ⊆ 𝑋1 ⊆
𝑋𝑛 ⊆ …. Thus, by Exercise 8.3.15, it follows that their union 𝑋+ = ⋃𝑛 𝑋𝑛 is

360 CHAPTER 8. THE UNPROVABLE

also consistent. Furthermore, it’s clear that for every formula 𝐴, either 𝐴 ∈ 𝑋+ or
¬𝐴 ∈ 𝑋+: so 𝑋+ is a consistent, negation-complete extension of 𝑋. □

8.3.17 Exercise
Suppose that 𝑦 is not free in any formula in 𝑋 or in 𝐴(𝑦). If 𝑋 ∪ {𝐴(𝑦)} is
inconsistent, and 𝑋 ∪ {∀𝑥 ¬𝐴(𝑥)} is inconsistent, then 𝑋 is inconsistent.

8.3.18 Lemma
Suppose that 𝑋 is a consistent set of sentences. Then 𝑋 has a consistent witness-
complete extension. That is, there is some consistent and witness-complete set of
formulas 𝑌 such that 𝑋 ⊆ 𝑌 .

Proof
The reason we start with sentences and end up with formulas in this case is that
we’ll use free variables in order to come up with enough terms to have a specific
instance of every generalization—so we need to guarantee that we haven’t already
“used up” too many variables to start out with.3

The proof is very similar to Lemma 8.3.16. Once again, we’ll list the formulas 𝐴
in an infinite sequence, so each formula is 𝐴𝑛(𝑥) for some number 𝑛. We’ll also
come up with a sequence of variables: for each 𝑛, let 𝑦𝑛 be a variable which is not
free in any of the formulas 𝐴0(𝑥), …, 𝐴𝑛(𝑥), and which is distinct from each of the
earlier variables 𝑦0, …, 𝑦𝑛. There is always such a variable, because there are only
finitely many free variables in each formula, and there are infinitely many variables
to choose from.

Then, as before, we can recursively define a sequence of sets 𝑋𝑛, as follows:

𝑋0 = 𝑋

𝑋𝑛+1 =
{

𝑋𝑛 ∪ {𝐴𝑛(𝑦𝑛)} if this is consistent
𝑋𝑛 ∪ {∀𝑥 ¬𝐴𝑛(𝑥)} otherwise

First, note that for each 𝑛, the variable 𝑦𝑛 is not free in any formula in 𝑋𝑛. (This
3This restriction to just sets of sentences is avoidable. Instead, we could add infinitely many

new constants to our language in order to get enough fresh terms to serve as witnesses to every
generalization. But if we did things that way, we would need to prove some (easy, but tedious) facts
about the relationship between consistent sets of formulas in different languages. Alternatively, we
could start with a “relettering” step, switching around all of the free variables in a way that leaves
infinitely many variables unused. But this approach also depends on proving tedious consistency facts
about relettered sets of formulas.

8.3. THE COMPLETENESS THEOREM 361

relies on the fact that no variables are free in 𝑋0.) Then we can show by induction
that each set 𝑋𝑛 is consistent. For the inductive step, we need to show that for
any consistent set, we can always consistently add either 𝐴𝑛(𝑦𝑛) (with an unused
variable 𝑦𝑛), or else ∀𝑥 ¬𝐴𝑛(𝑥). This follows from Exercise 8.3.17: if both of these
additions are inconsistent, then so is the original set. Since we have assumed that
𝑋0 is consistent to begin with, by induction every set 𝑋𝑛 is consistent.

It then follows that the union 𝑋+ = ⋃𝑛 𝑋𝑛 is also consistent. Furthermore, it’s clear
from the construction that for every formula 𝐴(𝑥), either 𝐴(𝑦) ∈ 𝑋+ for some term
𝑦, or else ∀𝑥 ¬𝐴(𝑥) ∈ 𝑋+. So 𝑋+ is a consistent and witness-complete extension
of 𝑋. □

8.3.19 Exercise (Henkin’s Lemma)
If 𝑋 is a consistent set of sentences, then 𝑋 has a model.

Hint. Put the previous three lemmas together (in the right order).

8.3.20 Exercise (The Completeness Theorem)
If 𝑋 ⊨ 𝐴, then 𝑋 ⊢ 𝐴.

8.3.21 Exercise (The Compactness Theorem)
If 𝑋 ⊨ 𝐴, then there is a finite subset 𝑋0 ⊆ 𝑋 such that 𝑋0 ⊨ 𝐴.

Before we move on, we should note another neat consequence of thewaywe proved
the Completeness theorem. We didn’t just show that every consistent set has some
model or other. In fact, for any consistent set of sentences 𝑋 we gave a specific
recipe for a canonical model for a set of formulas that includes 𝑋. An important
feature of this model is that it is not too big. So we can prove the following fact as
well.

8.3.22 Exercise (The Downward Löwenheim-Skolem Theorem)
If 𝑋 has a model, then 𝑋 has a countable model.

As youmight guess from the name, there is also an “upward” version of this theorem.
Here is what it says:

8.3.23 The Upward Löwenheim-Skolem Theorem
If 𝑋 has a model with an infinite domain 𝐷, then for any set 𝐷+ with at least as
many elements as 𝐷, 𝑋 has a model with domain 𝐷+.

362 CHAPTER 8. THE UNPROVABLE

Putting both directions together, we get this result:

8.3.24 The Löwenheim-Skolem Theorem
If 𝑋 has an infinite model, then 𝑋 has a model of every infinite size.

Proving the “upward” theorem uses ideas that go beyond this text. (See CITE.)
The basic idea is that we can add in lots of harmless copies of the elements of the
structure without affecting any of the first-order truths.

8.4 Models of Arithmetic*

UNDER CONSTRUCTION

Discuss: the Inductive Principle, first-order PA and induction schema.

Discuss: the standard model, and standard models of arithmetic more generally.
(Isomorphism. Give an example: domain is {2, 3, 4, …}, addition given by (𝑚 +
𝑛 − 4), etc.)

8.4.1 Exercise
Consider a structure 𝑆 for the language of arithmetic. If 𝑆 is a standard model
of arithmetic, then every element of the domain of 𝑆 is the denotation of some
numeral:

0 suc 0 suc suc 0 …

8.4.2 Exercise
Consider the signature of the language of arithmetic with one additional constant
symbol 𝑐. The theory

Thℕ ∪ {𝑐 ≠ 0, 𝑐 ≠ 1, 𝑐 ≠ 2, …}

has a model.

8.4.3 Exercise
There is a non-standard model of arithmetic: that is, there is a structure which
is a model of Thℕ and which is not isomorphic to the standard model ℕ.

TODO. Discuss the gap between the induction schema and the Inductive Principle.

8.5. THE INCOMPLETENESS THEOREM 363

8.5 The Incompleteness Theorem

One nice feature of formal proofs is that they are computationally tractable—much
more so than structures. We can systematically check whether any particular string
of symbols is a proof, and, if so, what it proves. This gives us another important con-
nection between two of the main ideas of this course: decidability and provability.
Furthermore, the Soundness and Completeness Theorems tell us that provability ex-
actly lines up with logical consequence (in our earlier sense involving structures).
This lets us—at last!—use things we have learned about undecidable sets to find
logical limits on simple theories.

What is a simple theory? Earlier (Section 5.4) we considered some theories that
consisted of the logical consequences of a finite set of axioms. We also considered
some theories like PA and ZFC which aren’t finitely axiomatizable, but are still
“simple” in the important sense. Now that we have the tools of computability theory
at our disposal, we can describe this more carefully. Even though the set of axioms
of First-Order Peano Arithmetic isn’t a finite set, it is still a decidable set: there is a
simple mechanical rule for answering the question “Is this an axiom of PA?”. Very
often that is enough.

Recall that a set of sentences 𝑋 axiomatizes 𝑇 iff 𝑇 is the set of all of the logical
consequences of 𝑋. Using Soundness and Completeness, we can now equivalently
say that 𝑋 axiomatizes 𝑇 iff, for every sentence 𝐴,

𝐴 ∈ 𝑇 iff 𝑋 ⊢ 𝐴

8.5.1 Definition
A theory 𝑇 is effectively axiomatizable iff there is some effectively decidable set
of sentences 𝑋 that axiomatizes 𝑇 . We usually just say “axiomatizable” for short.

So instead of our loose notion of a “simple theory”, we now have the precise notion
of an axiomatizable theory.

8.5.2 Exercise
Suppose that 𝑋 is an effectively decidable set of formulas. Explain why the set of
pairs (𝑃 , 𝐴) such that 𝑃 ∶ 𝑋 ⊢ 𝐴 is effectively decidable, using Definition 8.2.1.

(Officially showing this in detail—by writing a program—would be a big job.
You don’t have to do that: just describe the basic idea of an algorithm for check-
ing whether 𝑃 is a proof of 𝐴 from 𝑋.)

364 CHAPTER 8. THE UNPROVABLE

For the following exercises, it will be helpful to refresh your memory of the things
we showed about semi-decidable and effectively enumerable sets in Section 7.6.

8.5.3 Exercise
(a) Suppose that 𝑋 is a decidable set of formulas. Show that the set of formu-

las 𝐴 such that 𝐴 is provable from 𝑋 is semi-decidable.

(Thus the set of formulas which are provable from 𝑋 is also effectively
enumerable.)

(b) Give an example of a decidable set of formulas 𝑋 such that the set of
formulas that are provable from 𝑋 is not decidable. Explain.

8.5.4 Exercise
(a) Any effectively axiomatizable theory is effectively enumerable.

(b) The set of logical truths is effectively enumerable.

8.5.5 Exercise
If 𝑋 is a set of sentences which is effectively enumerable, consistent, and
negation-complete, then 𝑋 is decidable.

8.5.6 Exercise (Gödel’s First Incompleteness Theorem)
No theory is sufficiently strong, axiomatizable, consistent, and complete.

8.5.7 Exercise
For each of the following theories, say (i) whether it is axiomatizable, and (ii)
whether it is negation-complete. Briefly explain.

(a) The theory of strings Th𝕊.

(b) The theory of arithmetic Thℕ.

(c) The minimal theory of strings 𝖲.
(d) First-order Peano Arithmetic PA.

(e) First-order set theory ZFC (supposing this is consistent and sufficiently
strong, which we have not shown).

(f) The set of all logical truths.

(g) The set of all sentences.

8.6. GÖDEL SENTENCES 365

8.6 Gödel Sentences

Lots of interesting theories are sufficiently strong, axiomatizable, and consistent.
The minimal theory of strings is like this, and so is the minimal theory of arithmetic.
So are lots of reasonable axiomatic theories that extend or interpret these, like Peano
Arithmetic, first-order set theory, or many formalized physical theories. Gödel’s
First Incompleteness Theorem tells us that no theory like this is complete: for any
theory like this, there are sentences that can be neither proved nor disproved.

Our version of “Gödel’s First Incompleteness Theorem” is a bit anachronistic. What
we proved is a little different from what Gödel proved in 1931, and the way we
proved it is also a bit different.4 In several respects, we actually proved a bit more
than Gödel did (with the benefit of hindsight). But in one important respect, we
did a bit less. Consider the theory of Peano Arithmetic (PA). We know that there
exist sentences in the first-order language of arithmetic which PA neither proves
nor disproves. But so far we haven’t actually given any example of such a sentence.
In this sense, unlike Gödel’s proof, our proof of the First Incompleteness Theorem
was not constructive. Can we do better?

Let’s start by trying to reverse engineer the proof we already gave. We showed,
first, that if a theory 𝑇 is effectively axiomatizable, then its theorems are effectively
enumerable. Second, if 𝑇 is also consistent and complete, then 𝑇 is decidable. This
means that if 𝑇 is also sufficiently strong, then 𝑇 can represent the set of sentences
that are provable from 𝑇 ’s axioms. In other words, there is some formula Prov𝑇 (𝑥)

4In fact, to be historically accurate, all three of the notions “sufficiently strong”, “effectively ax-
iomatizable”, and “consistent” in the statement of the theorem need some qualification.

1. Gödel didn’t know about the theories 𝖰 or 𝖲 (in particular, he didn’t know that theories quite
as simple as this could represent every decidable set). So he used a different definition of
“sufficiently strong”, which referred to a much richer formal theory: the one given in Rus-
sell and Whitehead’s Principia Mathematica, PM. Since PM interprets 𝖰, Gödel’s notion of
“sufficiently strong” follows from ours.

2. Gödel didn’t know about Church and Turing’s definitions of computable functions and de-
cidable sets, or the Church-Turing Thesis—and certainly not our programming language Py.
(Church and Turing’s definitions were both developed in 1936. In fact, Gödel also developed
his own equivalent definition of computability in 1933.) So instead of talking about an “effec-
tively axiomatizable” theory (which has a decidable set of axioms), he talked about a theory
that has a primitive recursive set of axioms. This turns out to be equivalent to what can be
expressed in Py using only for loops, instead of while loops. Every primitive recursive set
is also decidable.

3. Gödel’s proof turned on a stronger consistency requirement, called 𝜔-consistency. We’ll dis-
cuss this below.

366 CHAPTER 8. THE UNPROVABLE

that represents 𝑇 within 𝑇 :

𝑇 ⊢ Prov𝑇 ⟨𝐴⟩ if 𝑇 ⊢ 𝐴
𝑇 ⊢ ¬ Prov𝑇 ⟨𝐴⟩ otherwise

Then, by Gödel’s Fixed Point Theorem, we have a sentence 𝐺 which is equivalent
(in 𝑇) to ¬ Prov𝑇 ⟨𝐺⟩. But this implies that 𝑇 is inconsistent (by Tarski’s Theorem).

But in fact, in a theory 𝑇 which is consistent, running that last step backwards tells
us that there really isn’t any formula Prov𝑇 (𝑥) that represents 𝑇 within 𝑇 . This
is exactly what Tarski’s Theorem (Exercise 6.11.6) tells us. So of course we can’t
really get an example of an undecidable sentence 𝐺 by taking a fixed point of the
negation of this non-existent formula.

But we can still do something very similar! Here’s something else we know: if 𝑇 is
effectively axiomatizable, then the relation “𝑃 is a proof of 𝐴 from 𝑇 ’s axioms” is
decidable. For short, call this the 𝑇 -proof relation. So, if 𝑇 is sufficiently strong,
we can represent this relation in 𝑇 , using a formula Proof𝑇 (x, y).

𝑇 ⊢ Proof𝑇 ⟨𝑃 ⟩⟨𝐴⟩ if 𝑃 is a proof of 𝐴 from 𝑇 ’s axioms
𝑇 ⊢ ¬ Proof𝑇 ⟨𝑃 ⟩⟨𝐴⟩ otherwise

Now consider the formula ∃x Proof𝑇 (x, y). It’s customary to call this formula
Prov𝑇 (y)—the provability formula for 𝑇 . But we have to be very careful about
this. As we just said, by Tarski’s Theorem we know that this formula can’t really
represent provability in 𝑇 (unless 𝑇 is inconsistent). But it does still have an im-
portant close relationship to provability. In a sense, provability is “representable in
one direction”. (This notion of one-way representability also came up in Section 6.9.
It’s analogous to semi-decidability.)

8.6.1 Exercise
Suppose that Proof𝑇 (x, y) represents the 𝑇 -proof relation in 𝑇 . Let Prov𝑇 (y) be
∃x Proof𝑇 (x, y).

(a) For any sentence 𝐴, if 𝑇 ⊢ 𝐴, then 𝑇 ⊢ Prov𝑇 ⟨𝐴⟩.
(b) Suppose furthermore that the theory 𝑇 is true in the standard string struc-

ture 𝕊. In that case, if 𝑇 ⊬ 𝐴, then 𝑇 ⊬ Prov𝑇 ⟨𝐴⟩.

Notice the difference between clause (b) in this exercise and the definition of “rep-
resent”. In a case where 𝐴 isn’t provable, it isn’t that 𝑇 says that 𝐴 is not provable—
but at least 𝑇 doesn’t incorrectly say that 𝐴 is provable.

8.6. GÖDEL SENTENCES 367

8.6.2 Definition
Let 𝑇 be a sufficiently strong, effectively axiomatizable theory. Let Proof𝑇 (x, y)
be a formula that represents the 𝑇 -proof relation in 𝑇 . (There is such a formula,
by the Representability Theorem (7.7.8).) Let Prov𝑇 (𝑦) be the provability formula
∃x Proof𝑇 (x, y).
A Gödel sentence for 𝑇 is a fixed point of the negation of the provability formula:
that is, it is a sentence 𝐺𝑇 such that

𝐺𝑇 ≡
𝑇
¬ Prov𝑇 ⟨𝐺𝑇 ⟩

8.6.3 Lemma
Any sufficiently strong, effectively axiomatizable theory 𝑇 has a Gödel sentence
𝐺𝑇 .

Proof
This immediately follows from Gödel’s Fixed Point Theorem (Exercise 6.9.9). □

8.6.4 Exercise
Let 𝑇 be a sufficiently strong, effectively axiomatizable theory, and let 𝐺𝑇 be a
Gödel sentence for 𝑇 .

(a) If 𝑇 is consistent, then 𝑇 ⊬ 𝐺𝑇 .

(b) If 𝑇 is true in the standard string structure 𝕊, then 𝑇 ⊬ ¬𝐺𝑇 .

We can improve a bit on part (b), by paying attention to exactly how truth—that
is, truth-in-the-standard-string-structure—comes into the argument. The key thing
that this heads off is the following possibility. Suppose there is no proof of 𝐺𝑇 .
Then, since 𝑇 represents the 𝑇 -proofs, for each particular string 𝑠, we’re guaranteed
that 𝑇 says, “𝑠 is not a proof of 𝐺𝑇 ”. But what if 𝑇 also says “But there is a proof
of 𝐺𝑇 !” This wouldn’t be a logical inconsistency: it’s not logically impossible for
there to be something else, something that isn’t one of the standard finite strings,
which is a proof of 𝐺𝑇 . (But even precisely stating this possibility goes beyondwhat
we can say in the first-order theory of strings.) Still, even though this wouldn’t be
formally inconsistent, a theory like this would would still be bad in a way. It has a
kind of “infinite inconsistency”. A theory like this accepts a generalization, while
ruling out every possible instance. This motivates the following definition.

8.6.5 Definition
A theory 𝑇 is 𝜔-inconsistent (pronounced “omega inconsistent”) iff there is some

368 CHAPTER 8. THE UNPROVABLE

formula 𝐴(𝑥) such that

(a) 𝑇 ⊢ ∃𝑥 𝐴(𝑥)
(b) For every string 𝑠, 𝑇 ⊢ ¬𝐴⟨𝑠⟩.

If there is no such formula, then 𝑇 is 𝜔-consistent.

8.6.6 Exercise (Gödel’s First Incompleteness Theorem, Version 2)
Suppose 𝑇 is a sufficiently strong, effectively axiomatizable theory, and let 𝐺𝑇
be a Gödel sentence for 𝑇 . If 𝑇 is consistent and 𝜔-consistent, then 𝑇 ⊬ 𝐺𝑇
and 𝑇 ⊬ ¬𝐺𝑇 .

So that pretty much gives us what we were hoping for. If a theory 𝑇 is sufficiently
strong, effectively axiomatizable, consistent, and also 𝜔-consistent, not only do we
know that 𝑇 is incomplete, but we can give a particular example of a sentence that
𝑇 neither proves nor refutes: the theory’s Gödel sentence.

(A sentence which can be neither proved nor refuted is often called undecidable.
But watch out—this meaning of “undecidable” is totally different from the notion
involving programs.)

8.7 Rosser Sentences*

UNDER CONSTRUCTION.

We’ve considered two different proofs of Gödel’s First Incompleteness Theorem.
The first was non-constructive: it didn’t give us a concrete example of a undecidable
sentence. The second (closer to Gödel’s original proof) gave us a specific example
of an undecidable sentence, but it used the extra assumption of 𝜔-consistency. It
turns out that that there is a third proof of Gödel’s First Incompleteness Theorem
that has the advantages of both of the proofs we’ve already given. It gives us a
specific example of an undecidable sentence, and it only depends on ordinary con-
sistency, rather than 𝜔-consistency. The main downside to this proof (the reason
we didn’t use it as our official proof all along) is that it is extra sneaky.

The trick is to notice that if there is a proof of 𝐴, then there is also a shortest proof.

8.8. CONSISTENCY IS UNPROVABLE 369

8.8 Consistency is Unprovable

What we’ve shown is that for any sufficiently strong, consistent, axiomatizable the-
ory, there is some true statement that it cannot prove—and we gave an example,
the Gödel sentence. But Gödel showed something more: he gave another specific
example of an unprovable statement which is of particularly deep importance. Any
sufficiently strong axiomatizable theory has the resources to “talk about” what is
provable in that very theory, using the provability formula from Section 8.6. So one
of the things such a theory can talk about is whether it can prove any contradictions.
That is, if 𝑇 is a sufficiently strong axiomatizable theory, then it includes a sentence
that says “𝑇 is consistent”—that is, a sentence which says “no contradiction is prov-
able in 𝑇 ”. The further thing Gödel showed is that if 𝑇 really is consistent, then this
statement is also unprovable. No reasonable theory can prove its own consistency.
This is called Gödel’s Second Incompleteness Theorem.
The basic idea of the proof is that in a sufficiently strong theory 𝑇 , the proof
of Gödel’s First Incompleteness Theorem can be formalized. The steps we went
through to justify First Incompleteness Theorem can also be carried out in a formal
proof from the axioms of 𝑇 . We won’t work through all of the details of the proof
of this result, but we will examine the main ideas.

Let’s start with a recap of the proof of the First Incompleteness Theorem. Suppose
that 𝑇 is a sufficiently strong theory with a decidable set of axioms 𝑋. Then as we
discussed in Section 8.6, there is a formula Proof𝑇 (x, y) such that

𝑇 ⊢ Proof𝑇 ⟨𝑃 ⟩⟨𝐴⟩ if 𝑃 is a proof of 𝐴 from 𝑋
𝑇 ⊢ ¬ Proof𝑇 ⟨𝑃 ⟩⟨𝐴⟩ otherwise

We also noted that this doesn’t mean that provability can be represented in 𝑇 . (In-
deed, Tarski’s Theorem tells us that, if it were, then 𝑇 would be inconsistent.) But
that doesn’t stop us from defining a provability formula: we can let Prov𝑇 (𝑦) be
∃x Proof(x, y). This doesn’t fully represent provability in 𝑇 , but it does “represent
provability in one direction.” If 𝐴 is provable in 𝑇 , then 𝐴 has some proof 𝑃 . So
𝑇 ⊢ Proof𝑇 ⟨𝑃 ⟩⟨𝐴⟩, and thus by existential generalization, 𝑇 ⊢ Prov𝑇 ⟨𝐴⟩. In
short, for any sentence 𝐴,

If 𝑇 ⊢ 𝐴 then 𝑇 ⊢ Prov⟨𝐴⟩

But, to reiterate, we don’t get the other half of the definition of representability: if
𝐴 is not provable, there is no guarantee that 𝑇 “knows” that fact. (Indeed, it will
follow from the Second Incompleteness Theorem that 𝑇 can’t know that there is no
proof of 𝐴.)

370 CHAPTER 8. THE UNPROVABLE

Remember that a theory 𝑇 is inconsistent iff ⊥ is provable in 𝑇 .

8.8.1 Definition
The consistency sentence for 𝑇 is the sentence ¬ Prov𝑇 ⟨⊥⟩. This is abbreviated
Con𝑇 . That is, to spell this out, Con𝑇 is the sentence

¬∃x Proof𝑇 (x, ⟨⊥⟩)

where Proof𝑇 (x, y) represents the 𝑇 -proofs in 𝑇 .

(Note that while we say “the consistency sentence”, this is a bit loose. There are
many ways for 𝑇 to represent the relation “𝑃 is a proof of 𝐴”. Different choices of
the formula Proof𝑇 (x, y) will clearly give rise to different consistency sentences for
𝑇 . In fact, it can make a difference which one we choose.)

The result we are working toward says that no consistent theory can prove its own
consistency sentence. That is:

If 𝑇 ⊢ Con𝑇 then 𝑇 ⊢ ⊥

For the first step, recall from Section 8.6 that any sufficiently strong, effectively
axiomatizable theory 𝑇 has a Gödel sentence 𝐺𝑇 , such that

𝑇 ⊢ (𝐺 ↔ ¬ Prov𝑇 ⟨𝐺⟩)

Recall also from Exercise 8.6.4 that if 𝑇 is consistent, then 𝑇 does not prove its own
Gödel sentence. Putting that the other way around:

If 𝑇 ⊢ 𝐺𝑇 then 𝑇 ⊢ ⊥

(From here on out, we’ll drop the 𝑇 subscripts when it’s clear how to fill them in.)

The second step is to show that this first step can be formalized in 𝑇 . To do this, we
need to begin by showing that 𝑇 “knows” some basic facts about how proofs are
put together. Here are two basic things we know about provability:

If 𝑇 ⊢ (𝐴 → 𝐵) and 𝑇 ⊢ 𝐴 then 𝑇 ⊢ 𝐵
If 𝑇 ⊢ 𝐴 then 𝑇 ⊢ Prov𝑇 ⟨𝐴⟩

That is, provability is closed under modus ponens; and if 𝐴 is provable, then it
is provable that 𝐴 is provable. Our proof of the Second Incompleteness Theorem
relies on 𝑇 also “knowing” both of these two facts.

8.8. CONSISTENCY IS UNPROVABLE 371

8.8.2 Definition
A theory 𝑇 satisfies the derivability conditions iff

𝑇 ⊢ Prov⟨𝐴 → 𝐵⟩ → Prov⟨𝐴⟩ → Prov⟨𝐵⟩
𝑇 ⊢ Prov⟨𝐴⟩ → Prov⟨Prov⟨𝐴⟩⟩

The first condition formalizes the claim that provability is closed under modus po-
nens. The second condition formalizes the claim that if 𝐴 is provable, then it is
provable that 𝐴 is provable.

Showing exactly which theories satisfy the derivability conditions involves some
fiddly details that we are going to skip over. We are just going to take this for
granted in what follows. (In particular, it can depend a bit on the details of the
theory 𝑇 and the way in which we define the formula Proof(𝑥, 𝑦). I’m ignoring
some complications here.) But here’s one important example: first-order Peano
Arithmetic PA satisfies the derivability conditions.

8.8.3 Notation
We are going to do some fairly intricate reasoning about proofs about provabil-
ity. For this purpose it can be helpful to introduce some more concise notation,
inspired by modal logic. We can use the “box” notation ◻𝐴 as an abbreviation for
the sentence Prov⟨𝐴⟩. Using box notation, we can summarize the key facts about
provability more concisely like this:

𝑇 ⊢ 𝐺 ↔ ¬◻𝐺
If 𝑇 ⊢ 𝐺 then 𝑇 ⊢ ⊥

If 𝑇 ⊢ 𝐴 → 𝐵 and 𝑇 ⊢ 𝐴 then 𝑇 ⊢ 𝐵
𝑇 ⊢ ◻(𝐴 → 𝐵) → ◻𝐴 → ◻𝐵
If 𝑇 ⊢ 𝐴 then 𝑇 ⊢ ◻𝐴

𝑇 ⊢ ◻𝐴 → ◻◻𝐴

We can also rewrite the consistency sentence Con𝑇 as ¬◻⊥.

8.8.4 Exercise
Here is a pretty basic logical fact: for any sentence 𝐴,

If 𝑇 ⊢ 𝐴 and 𝑇 ⊢ ¬𝐴 then 𝑇 is inconsistent

372 CHAPTER 8. THE UNPROVABLE

Use the facts about provability to show that 𝑇 “knows” this fact. That is:

𝑇 ⊢ Prov⟨𝐴⟩ → Prov⟨¬𝐴⟩ → Prov⟨⊥⟩

In box notation:
𝑇 ⊢ ◻𝐴 → ◻¬𝐴 → ◻⊥

8.8.5 Exercise
We have already proved this fact (Exercise 8.6.4 (a)):

If 𝑇 ⊢ 𝐺 then 𝑇 ⊢ ⊥

In this exercise, we’ll show that the proof of this fact can be carried out within
𝑇 .

(a) 𝑇 ⊢ ◻𝐺 → ◻¬◻𝐺
(b) 𝑇 ⊢ ◻𝐺 → ◻⊥

8.8.6 Exercise (Gödel’s Second Incompleteness Theorem)
Use the previous exercise and Exercise 8.6.4 (a) to show that if 𝑇 proves the
consistency sentence for 𝑇 , then 𝑇 is inconsistent. That is:

If 𝑇 ⊢ Con𝑇 then 𝑇 ⊢ ⊥

Or in other words:
If 𝑇 ⊢ ¬◻⊥ then 𝑇 ⊢ ⊥

Chapter 9

Second-Order Logic*

Ever and anon we are landed in particulars, but this is
not what I want.

Plato (c. 428–c. 248 BCE), Meno

UNDER CONSTRUCTION

Overview:

1. The idea of second-order logic
2. Semantics for second-order logic
3. Second-order Peano Arithmetic (PA2) does not have non-standard models
4. Thus PA2 is negation-complete
5. Thus PA2 is not effectively enumerable
6. Thus second-order logic has no sound and complete proof system
7. Type theory

9.1 Syntax and Semantics

• Second-order variables.
• Atomics of the form 𝑋𝑡1…𝑡𝑛.
• Second-order quantifiers.
• Second-order assignments.
• Semantic clauses for atomics and quantifiers.
• Second-order logical consequence and consistency. (⊧2)
• The second-order theory of a structure. (Th2)

373

374 CHAPTER 9. SECOND-ORDER LOGIC*

• Observe that Gödel’s Fixed Point Theorem, Tarski’s Theorem, the Repre-
sentability Theorem, the Essential Undecidability Theorem, and Church’s
Theorem all still apply.

9.2 Second-order Peano Arithmetic

Contrast the Inductive Property (of numbers) and the first-order induction schema
again.

Write out 𝑃 𝐴2. The induction axiom:

∀𝑋(𝑋0 → ∀𝑛(𝑋𝑛 → 𝑋(suc 𝑛)) → ∀𝑛 𝑋𝑛)

Note that 𝑃 𝐴2 is sufficiently strong.

9.2.1 Definition
… isomorphism …

9.2.2 Definition
A theory is categorical iff all of its models are isomorphic to one another.

9.2.3 Exercise
𝑃 𝐴2 is categorical.

9.2.4 Exercise
Second-order consequence is not compact. That is, there is an infinite set of
second-order sentences 𝑋 such that every finite subset of 𝑋 has a model, but 𝑋
does not have a model.

9.2.5 Exercise
(a) 𝑃 𝐴2 = Th2 ℕ
(b) 𝑃 𝐴2 is negation-complete.

9.2.6 Exercise
Note that the Essential Undecidability Theorem implies that 𝑃 𝐴2 is undecidable
(since it is sufficiently strong and consistent). Show:

(a) 𝑃 𝐴2 is not semi-decidable.
(b) There is a decidable set𝑋 such that the set of sentences𝐴 such that𝑋 ⊧2 𝐴

9.3. FURTHER DIRECTIONS 375

is not semi-decidable.

9.2.7 Definition
Let a proof system be a set of triples (𝜋, 𝑋, 𝐴)—we say that 𝜋 is a proof of 𝐴 from
assumptions 𝑋—which satisfies the further principle that for any decidable set of
sentences 𝑋, the set of pairs (𝜋, 𝐴) such that 𝜋 is a proof of 𝐴 from 𝑋 is decidable.

9.2.8 Definition
Let ⊧ be any relation between a set of formulas and a formula.

(a) A proof system is sound for ⊧ iff, for any 𝑋 and 𝐴, if there is a proof of 𝐴
from 𝑋, then 𝑋 ⊧ 𝐴.

(b) A proof system is complete for ⊧ iff, for any 𝑋 and 𝐴, if 𝑋 ⊧ 𝐴, then there
is a proof of 𝐴 from 𝑋.

9.2.9 Exercise
No proof system is sound and complete for second-order logical consequence.

9.3 Further Directions

• The plural interpretation
• Type theory
• Higher-order identity. Extensionality and intensionality
• Henkin models

376 CHAPTER 9. SECOND-ORDER LOGIC*

Chapter 10

Set Theory*

There is no doubt in my mind that in this way we will
get farther and farther ahead, never reaching an
unsurmountable limit, but also attaining not even an
approximate grasp of the absolute. The absolute can
only be acknowledged, but never known, not even
approximately.

Georg Cantor, “Fundamentals of a General Theory of
Manifolds: A Mathematical-Philosophical Study in

the Theory of the Infinite” (1883)

UNDER CONSTRUCTION

10.0.1 Definition
The first-order language of pure set theory is a first-order language with just one
relation symbol ∈. First-order set theory, or ZFC, is the theory in this language
with the following axioms. As usual, we add universal quantifiers to bind the free
variables, and 𝐴 can be any formula in this first-order language of sets. We’ll use
z ⊆ x as an abbreviation for ∀w (w ∈ z → w ∈ x).

(This axiomatization is pretty old-school. It’s stated in a way which avoids mention-
ing ordered pairs or functions directly, which makes things a bit harder than you
might expect.) Each axiom has a name.

Extensionality.
∀z(z ∈ x ↔ z ∈ y) → x = y

377

378 CHAPTER 10. SET THEORY*

Separation.
∃y ∀z (z ∈ y ↔ (z ∈ x ∧ 𝐴))

Power Set.
∃y ∀z (z ∈ y ↔ z ⊆ x)

Union.
∃y ∀z (z ∈ y ↔ ∃w (w ∈ x ∧ z ∈ w))

Choice.
∀y (y ∈ x → ∃z (z ∈ y)) →

∃w ∀y (y ∈ x → ∃!z (z ∈ y ∧ z ∈ w))

Infinity.
∃x (∃y (y ∈ x) ∧

∀y (y ∈ x → ∃z (z ∈ x ∧ y ⊆ z ∧ y ≠ z)))

Foundation.
∃y (y ∈ x) → ∃y (y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))

Replacement.
∀y (y ∈ x → ∃!z 𝐴) → ∃w ∀y (y ∈ x → ∃z (z ∈ w ∧ 𝐴))

Overview:

1. First order set theory ZFC.
2. Set theory has no intended model.
3. If ZFC is consistent, it has countable models. Skolem’s Paradox.
4. If there are large cardinals, ZFC is consistent.
5. Thus (by Gödel’s Second Incompleteness Theorem) ZFC does not prove there

are large cardinals.
6. Some independence results (stated without proof): large cardinals, the Con-

tinuum Hypothesis.

6. Second-order set theory ZFC2.
7. ZFC2 does not have countable models

379

8. Zermelo’s categoricity theorem.
9. Kreisel’s Principle.

380 CHAPTER 10. SET THEORY*

References

Benacerraf, Paul. 1965. “What Numbers Could Not Be.” The Philosophical Re-
view 74 (1): 47–73.

Breckenridge, Wylie, and Ofra Magidor. 2012. “Arbitrary Reference.” Philosoph-
ical Studies 158 (3): 377–400. https://doi.org/10.1007/s11098-010-9676-z.

Lewis, David. 1986. On the Plurality of Worlds. Oxford: Blackwell.
McGinnis, Jon. 2007. “Avicennan Infinity: A Select History of the Infinite Through

Avicenna.” Philosophy 32: 233–50.
Potter, Michael. 2004. Set Theory and Its Philosophy: A Critical Introduction.

Clarendon Press.
Russell, Bertrand. (1918) 2009. The Philosophy of Logical Atomism. 1st edition.

London; New York: Routledge.
Smeding, Gideon Joachim. 2009. “An Executable Operational Semantics for

Python.” PhD thesis, Utrecht, The Netherlands: Universiteit Utrecht.
Tarski, Alfred. (1936) 2002. “On the Concept of Following Logically.” History

and Philosophy of Logic 23 (3): 155–96. https://doi.org/10.1080/0144534021
000036683.

381

https://doi.org/10.1007/s11098-010-9676-z
https://doi.org/10.1080/0144534021000036683
https://doi.org/10.1080/0144534021000036683

382 CHAPTER 10. SET THEORY*

	Preface
	The Big Picture
	About This Text
	Acknowledgments

	Strategies for Proving Things
	Give yourself room
	Keep track of your goals
	Proving an “every” statement
	Unpacking definitions
	Proving an “if” statement
	Putting it together
	Using existence statements
	Proving existence statements
	“And” statements
	“Iff” statements
	“Or” statements
	Proof by contradiction
	Thinking big and thinking small

	Sets and Functions
	Sets
	Functions
	Ordered Pairs
	Higher-Order Sets and Functions
	The Uncollectable
	Simplifications of Set Theory*
	Review

	The Infinite
	Numbers and Induction
	Recursive Definitions
	The Recursion Theorem*
	Sequences and Strings
	Official Principles for Sequences*
	Properties of Numbers and Strings
	Review

	Terms
	Signatures and Structures
	Syntax and Semantics
	Parsing Terms*
	Recursion for Terms*
	Variables
	Review

	The Uncountable
	Counting
	Countable Sets
	Coding and Parsing Details*
	Finite Sets*
	Uncountable Sets
	Induction and Infinity*
	Review

	Truth and Consequence
	Syntax
	Semantics
	Metalogic
	Theories and Axioms
	Review

	The Inexpressible
	Explicit Definitions
	Unpacking Definitions*
	Defining Quotation
	Recursive Definitions
	Recursive Definitions, in General*
	Representing Language
	Self-Reference and Paradox
	Definitions in a Theory
	Theories of Syntax
	Representability in the Minimal Theory of Strings 𝖲*
	Syntax and Arithmetic
	Review
	Key Concepts
	Key Facts

	The Undecidable
	Programs
	Syntax and Semantics
	The Church-Turing Thesis
	The Universal Program
	The Halting Problem
	Semi-Decidable and Effectively Enumerable Sets
	Decidability and Logic

	The Unprovable
	Proofs
	Official Syntax
	The Completeness Theorem
	Models of Arithmetic*
	The Incompleteness Theorem
	Gödel Sentences
	Rosser Sentences*
	Consistency is Unprovable

	Second-Order Logic*
	Syntax and Semantics
	Second-order Peano Arithmetic
	Further Directions

	Set Theory*
	References

